CONTENTS

1 Systems of Linear Algebraic Equations 1
 1.1 Linear Algebraic Equations, 1
 1.2 Matrix Representation of Linear Systems and the Gauss-Jordan Algorithm, 12
 1.3 The Complete Gauss Elimination Algorithm, 17
 1.4 Echelon Form and Rank, 26
 1.5 Computational Considerations, 34

2 Matrix Algebra 39
 2.1 Matrix Multiplication, 39
 2.2 Some Useful Applications of Matrix Operators, 48
 2.3 The Inverse and the Transpose, 54
 2.4 Determinants, 61
 2.5 Three Important Determinant Rules, 68

PART I REVIEW PROBLEMS FOR PART I 79

3 Vector Spaces 89
 3.1 General Spaces, Subspaces, and Spans, 89
CONTENTS

3.2 Linear Dependence, 93
3.3 Bases, Dimension, and Rank, 97

4 Orthogonality 105

4.1 Orthogonal Vectors and the Gram-Schmidt Algorithm, 105
4.2 Orthogonal Matrices, 115
4.3 Least Squares, 123
4.4 Function Spaces, 133

PART II REVIEW PROBLEMS FOR PART II 140

5 Eigenvectors and Eigenvalues 144

5.1 Eigenvector Basics, 144
5.2 Calculating Eigenvalues and Eigenvectors, 155
5.3 Symmetric and Hermitian Matrices, 168

6 Similarity 181

6.1 Similarity Transformations and Diagonalizability, 181
6.2 Principal Axes and Normal Modes, 189
6.3 Schur Decomposition and Its Implications, 198
6.4 The Singular Value Decomposition, 212
6.5 The Power Method and the QR Algorithm, 217

7 Linear Systems of Differential Equations 221

7.1 First-Order Linear Systems, 221
7.2 The Matrix Exponential Function, 230
7.3 The Jordan Normal Form, 236
7.4 Matrix Exponentiation via Generalized Eigenvectors, 246

PART III REVIEW PROBLEMS FOR PART III 255