Index

Note: Page numbers in *italic* denote figures and tables, where outside page ranges.

α-relaxation, supercooled liquids 5–8
α-synuclein, isothermal titration calorimetry (ITC) 350, 353
β-conglycinin (7S) soy protein, high-pressure processing (HPP) 66–67
β-lactoglobulin, high-pressure processing (HPP) 68–69
β-lactoglobulin-chitosan isothermal titration calorimetry (ITC) 354

α-absicisic acid signaling pathway, differential scanning fluorimetry (DSF) 368
amyloid protein 51
plasticizers 163
protein misfolding 349–351, 353
ANNs see artificial neural networks
anthrax protein protective antigen unfolding, differential scanning fluorimetry (DSF) 367
applications
differential scanning calorimetry (DSC) 328–339
differential scanning fluorimetry (DSF) 363, 365–369
isothermal titration calorimetry (ITC) 348–358
plolyactides (PLA) 261
state diagrams 256–258

Arrhenius equation 5–8
reaction kinetics 37–38
temperature dependence 37–38
artificial neural networks (ANNS), spray drying 243
aspartyl transcarbamoylase (cər, 310 kDa), differential scanning calorimetry (DSC) 327, 336
Avrami equation
crystal-melt phase change 131–132
isothermal crystallization 186–190
non-isothermal crystallization kinetics 191–193

b
berry powders, glass transition 43
BET-monolayer line, state diagrams 255–258
biopolymer films, plasticizers 159–176
biopolymer glasses 207
biopolymers
see also individual biopolymers
crystal-melt phase change 119–134
differential scanning calorimetry (DSC) 149–151
relaxation properties 1–24
relaxation techniques 141–154
thermal properties 1–24, 141–154
blackberry powder, glass transition 43
blueberry powder, glass transition 43
bovine pancreatic trypsin inhibitor (BPTI),
differential scanning calorimetry (DSC) 329, 335
bovine serum albumin (BSA), high-pressure processing (HPP) 64–65, 96–98
BPTI see bovine pancreatic trypsin inhibitor
BSA see bovine serum albumin

C

caking
glass transition 241–242
spray drying 241–242
sugar solutions/sugar-rich food 241–242
canola preparations, differential scanning calorimetry (DSC) 340
carbohydrates
dehydration/dried foods 226–227
glass transition 226–227
Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence, nuclear magnetic resonance (NMR) 144
casein
dynamic thermo-mechanical analysis (DMA) 153
nuclear magnetic resonance (NMR) 142–143
relaxation techniques 142–143, 153
cereal-based starch, starch pasting properties 432
chestnut flour, starch pasting properties 442–445, 446–448
chitosan
properties 282
structure 282
thermal properties 281–283, 290, 293–298
thermogravimetric analysis (TGA) 296
chitosan - β-lactoglobulin
isothermal titration calorimetry (ITC) 354
protein-small molecule interaction 354
chocolate
crystallization 199–201
polymorphism 199–201
Clausius-Claperyron equation,
high-pressure freezing (HPF) 396–397
cocoa butter, polymorphism 199–201
collapse phenomena
Deborah number 234
dehydration/dried foods 234–235
glass transition 234–235
competitive/displacement ITC, isothermal titration calorimetry (ITC) 359–361
competitive metal capture
isothermal titration calorimetry (ITC) 353–354
confined aqueous solutions, Gordon Taylor (GT) equation 18–24
continuous ITC, isothermal titration calorimetry (ITC) 361–362
controlling crystallization in food products (influencing factors), crystallization 194
corn starch, starch pasting properties 434
coupling theory, high solid biomaterials 75–76
CPMG see Carr-Purcell-Meiboom-Gill pulse sequence
crosslinking in proteins, high-pressure processing (HPP) 59–60
crystal growth 183–184
crystal-melt phase change 130–131
crystallization 183–203
chocolate 199–201
controlling crystallization in food products (influencing factors) 194
crystal growth 183–184
crystallization kinetics 131, 185–186
crystal-melt phase change 126–130
food 194
honey 197–199
ice-cream 194–197
isothermal crystallization 186–190
lipid crystallization 201–202
non-isothermal crystallization kinetics 190–193
nucleation 183–184
Ozawa model 193
polymorphism 185, 199–201
shape of crystals 184–185
crystallization kinetics 185–186
crystal-melt phase change 131
crystal melting, crystal-melt phase change 131–133
crystal-melt phase change 119–134
Avrami equation 131–132
biopolymers 119–134
classification, phase transitions 124–126
crystal growth 130–131
crystallization 126–130
crystallization kinetics 131
crystal melting 131–133
food 119–134
heterogeneous nucleation 129–130
homogeneous nucleation 127–129
melting 126–130
morphology 126–130, 131–133
phase diagram 122–124
phase equilibrium 120–122
phases 120
phase transitions 120
stability 120–122
thermodynamics 120–124
water role 124
‘c’ value, isothermal titration calorimetry (ITC) 343, 346–347
cytochrome c (iso-1 form), differential scanning calorimetry (DSC) 335
glass transition 225–239
lips 228
powder stickiness 233–234
proteins 227–228
reaction rates 235
solids 232–235
structural relaxations 229–232
sugar solutions/sugar-rich food 226–227
thermal plasticization 229–231
Vogel–Fulcher–Tammann (VFT) equation 226, 229
water plasticization 229–231
Williams–Landel–Ferry (WLF) equation 226, 229, 231–232
denaturation, globular proteins 50, 51
denatured protein and heat capacity, differential scanning calorimetry (DSC) 323
deposition
glass transition 241–242
spray drying 241–242
sugar solutions/sugar-rich food 241–242
devolution theory, differential scanning calorimetry (DSC) 322
dielectric spectroscopy
relaxation technique 146–149
yellow–locust pure honey 146–147
differential scanning calorimetry (DSC) 306–341
analysis of DSC data 309–320
application of structural thermodynamics concepts 323–325
applications 328–339
aspartyl transcarbamoylase ($\epsilon_d r_0$, 310 kDa) 327, 336
biopolymers 149–151
bovine pancreatic trypsin inhibitor (BPTI) 329, 335
characteristics 307
cytochrome c (iso-1 form) 335
definitions 307
denaturation of mutant forms of proteins 337–339
dairy ingredients, glass transition 41–42
dairy products, high-pressure thawing (HPT) 417–418
Deborah number
collapse phenomena 234
dehydration/dried foods 234
dehydration/dried foods 225–239
carbohydrates 226–227
collapse phenomena 234–235
Deborah number 234
glass formers 231–232
differential scanning calorimetry (DSC) (contd.)
denatured protein and heat capacity 323
devolution theory 322
tenhalpy change 324
tenropy change 324–325
excess heat capacity function 320–321
folding mechanism prediction 328–331
food proteins studies 339–340
future perspective of DSC analysis 341
Gibbs free energy 311, 320
irreversible processes 327
native protein and heat capacity 323–324
non two-state denaturation 335–337
non two-state transitions 316–320, 326–327
numerical consideration for
non-two-state processes 326–327
numerical consideration for two-state
processes 325–326
numerical investigation on irreversible
processes 327
numerical treatment of DSC data
325–327
overall thermodynamic parameters
321–323
parameter-setting 309
prediction of folding mechanism
328–331
protein characterization 306–341
pumpkin flour 150
relaxation technique 149–151
rice bran proteins, yeast fermented 340
soyabean 340
soybean (SPI) and cornstarch (CS)
mixture 340
stability analysis 331–332
studies on thermal denaturation 328
sweet potato puree–based baby food
149–150
technique 308–309
two-state denaturation 333–335
two-state denaturation of protein-ligand
complex 333–334
two-state denaturation with a permanent
change in the heat capacity 334–335
two-state denaturation with
self-association or dissociation 333
two-state transition 309–313, 325–326
two-state transition with a permanent
change in the heat capacity 313–316
van’t Hoff equation 309, 312–313, 318, 325, 326, 327
differential scanning fluorimetry (DSF)
363–369
abscisic acid signaling pathway 368
anthrax protein protective antigen
unfolding 367
applications 363, 365–369
buffer composition effect 365
principle 363–364
problems 366–367
protein characterization 363–369
protein quantification 366
protein roles 369
protein-small molecule interaction
367–368
protein stability characterization
365–369
real-time PCR system 364, 366–367
differential thermal analysis (DTA), protein
characterization 370–371
DMA see dynamic thermo-mechanical
analysis
dough development, hydrated gluten
networks 219
dried foods see dehydration/dried foods
drying effect, starch pasting properties
442–445
DSC see differential scanning calorimetry
DSF see differential scanning fluorimetry
DTA see differential thermal analysis
dynamic thermo-mechanical analysis
(DMA)
casein 153
glutten 153
polylactides (PLA) 152
protein characterization 371
relaxation techniques 151–154
emulsification properties of proteins, factors affecting 54–55
emulsifiers effect, starch pasting properties 437–438
energy landscape scenario, differential scanning calorimetry (DSC) 328, 330
enthalpy change
differential scanning calorimetry (DSC) 324
isothermal titration calorimetry (ITC) 344–345, 347
entropy change
differential scanning calorimetry (DSC) 324–325
isothermal titration calorimetry (ITC) 348
enzymatic inactivation, high-pressure processing (HPP) 69–70
Escherichia coli, high-pressure processing (HPP) 70

f
fababean, differential scanning calorimetry (DSC) 340
Ferry and Stratton equation
glass transition pressure 76–77
high solid biomaterials 76–77
field pea, differential scanning calorimetry (DSC) 340
first-order reactions, reaction kinetics 36
first-order transitions, phase transitions 125–126
fish, high-pressure thawing (HPT) 415, 416
flavonoids
isothermal titration calorimetry (ITC) 356
protein-small molecule interaction 356
Flory-Fox equation
glass transition temperature 267
polylactides (PLA) 267
foaming properties
globular proteins 55
proteins 55
folding mechanism of proteins
(intra-molecular cooperation)
Gibbs free energy 349
isothermal titration calorimetry (ITC) 348–349
macromolecular crowding 350
protein allostery 349
folding mechanism prediction, differential scanning calorimetry (DSC) 328–331
food
crystallization 194
crystal-melt phase change 119–134
dehydration/dried foods 225–239
relaxation properties 1–24
relaxation techniques 141–154
thermal properties 1–24, 141–154
water role, phase transition 124
food colorants
isothermal titration calorimetry (ITC) 355
protein-small molecule interaction 355
food fortification
isothermal titration calorimetry (ITC) 355
protein-small molecule interaction 355
food models, pressure shift freezing (PSF) 403–404
Food Polymer Science approach,
dehydration/dried foods 225–226
food proteins studies, differential scanning calorimetry (DSC) 339–340
food stability determination, state diagrams 256–258
‘Food Stability Map’
glass transition 232, 233
structural relaxations 232, 233
Fourier transform infrared spectroscopy (FTIR)
immunoglobulins 88, 99–101
ovalbumin 93–94, 99–101
soy glycinin 90, 99–101
Fredholm equation, hydrated gluten networks 215
free-volume theory
glass transition 32–34
high solid biomaterials 72–75
Index

free-volume theory (contd.)
 time-temperature superposition (TTS) 72
 Williams–Landel–Ferry (WLF) equation 33–34, 74–75
freezing processes, water-ice transitions 393–394
fruit powders
 glass transition 42–43, 244–245
 spray drying 244–245
 stickiness reduction 244–245
fruits and vegetables, pressure shift freezing (PSF) 402–403
FTIR see Fourier transform infrared spectroscopy
future perspectives
 differential scanning calorimetry (DSC) 341
 isothermal titration calorimetry (ITC) 362–363
 protein characterization by thermal property measurement 373–374
 future studies, glass transition 43–44
 gelatin 283–287
 globular proteins 49–102
 heterogeneity of food 44
 high-protein powders 42
 high solid biomaterials 70–72
 honey 244
 kinetic theory 34
 lipids 228
 mango powder 42–43
 milk powders 41–42
 mode coupling theories 35
 myoglobin 8–18
 pineapple powder 42–43
 powder stickiness 233–234
 proteins 8–18, 227–228
 raspberry powder 43
 reaction rates 235
 skim milk 42
 solids 232–235
 spray drying 240
 stability 44
 state diagrams 252–253

Gibbs free energy
 differential scanning calorimetry (DSC) 311, 320
 folding mechanism of proteins (intra-molecular cooperation) 349
 isothermal titration calorimetry (ITC) 344, 349
 phase transitions 125–126
glass formers, dehydration/dried foods 231–232
glass transition
 berry powders 43
 blackberry powder 43
 blueberry powder 43
 caking 241–242
 carbohydrates 226–227
 collapse phenomena 234–235
dairy ingredients 41–42
defining 31
dehydration/dried foods 225–239
 ‘Food Stability Map’ 232, 233
 future-volume theory 32–34
 fruit powders 42–43, 244–245
 future studies 43–44
 gelatin-based film, thermal properties 287–290
 gelatin micro- and sub micro particles 291
gelatin/rice flour blend films, thermogravimetric analysis (TGA) 291–293
gelation
 factors affecting 52–53
 globular proteins 50–52, 59–60
 high-pressure processing (HPP) 59–60
GCW see green coconut water
gelatin
 glass transition 283–287
 plasticizer 163–166
 properties 281–282
 sources 283–287
 structure 282
 thermal properties 281–293, 298
 thermal transition by TGA 290–293
 thermogravimetric analysis (TGA) 290–293
gelatin-based film, thermal properties 287–290
 gelatin micro- and sub micro particles 291
 gelatin/rice flour blend films, thermogravimetric analysis (TGA) 291–293
genation
Index

stickiness 241–246
strawberry powder 43
structural relaxations 229–232
sugars 39–41
sugar solutions/sugar-rich food 3–8, 9, 226–227
sweet potato 245–246
T_g values/profile 242–243, 247
theories 32–35
thermodynamic theory 34–35
time-temperature-pressure effect on the vitrification of high solid systems 70–79
tomato powder 42–43
Vogel-Fulcher-Tammann (VFT) equation 226, 229
whey protein 41–42
Williams–Landel–Ferry (WLF) equation 226, 229, 231–232
glass transition pressure
Ferry and Stratton equation 76–77
high solid biomaterials 76–79
glass transition temperature
Flory-Fox equation 267
polylactides (PLA) 263–267
water 1–6, 11, 13, 19, 21, 22–23
gliadin-enriched networks, hydrated gluten networks 217
globular proteins
bovine serum albumin (BSA) 64–65, 96–98
denaturation 50, 51
emulsification properties 54–55
foaming properties 55
functional properties, high-pressure processing (HPP) 61–63
gelation 50–52, 59–60
glass transition 49–102
high-pressure processing (HPP) 55–63
high-pressure processing (HPP), structural properties 79–98
immunoglobulins 86–88
molten globular state 59
ovalbumin 93–96
pressurized globular proteins, high-pressure processing (HPP) 59
protein functionality 49–102
protein gelation 50–53
protein unfolding and denaturation 50, 51
protein-water interactions 49–50
soy glycinin 88–92
structural properties, high-pressure processing (HPP) 79–98
structure and the native state 49
water penetration 59
whey protein 79–86

gluten

dynamic thermo-mechanical analysis (DMA) 153
microstructure 217–219
relaxation technique 153

glutenin-enriched networks, hydrated gluten networks 217
gluten networks, hydrated see hydrated gluten networks
glycinin (11S) soy protein, high-pressure processing (HPP) 65–66
Gordon Taylor (GT) equation 1–3, 4
confined aqueous solutions 18–24
high-water contents 18–24
water-glycerol solutions 18–24
green coconut water (GCW)
nuclear magnetic resonance (NMR) 147–148
relaxation technique 147–148
guar gum, starch pasting properties 437–438

h

Havriliak-Negami function, proteins 12–13
heat capacity, isothermal titration calorimetry (ITC) 347–348
heterogeneous nucleation, crystal-melt phase change 129–130
high hydrostatic pressure equipment, high-pressure processing (HPP) 55–57
high pressure-cold pasteurization, high-pressure processing (HPP) 57–58
high-pressure differential scanning calorimetry (HP DSC), high-pressure thawing (HPT) 411, 412
high-pressure freezing (HPF)
 Clausius-Claperyron equation 396–397
 equipment 397
 microbial growth 407–408
 pressure shift freezing (PSF) 397–404
 principle 396–397
 super-cooling 399–400
 water-ice transitions 396–408
high pressure-induced thawing (HPIT) 408
high-pressure processing (HPP)
 bovine serum albumin (BSA) 64–65, 96–98
 crosslinking in proteins 59–60
 enzymatic inactivation 69–70
 Escherichia coli 70
 factors affecting protein changes 59–61
 gelation 59–60
 globular proteins 55–63
 globular proteins, functional properties 61–63
 globular proteins, structural properties 79–98
 glycinin (11S) soy protein 65–66
 high hydrostatic pressure equipment 55–57
 high pressure-cold pasteurization 57–58
 high pressure-temperature pasteurization 57–58
 immunoglobulins 86–88, 98–102
 lysozyme 68
 microbial inactivation 69–70
 muramidase 68
 ovalbumin 67–68, 93–96, 98–102
 pressurized globular proteins 59
 Pseudomonas fluorescens 70
 soy glycinin 88–92, 98–102
 soy proteins 65–67
 Staphylococcus aureus 70
 starch pasting properties 445–446
 water-ice transitions 394–396
 whey protein 68–69, 79–86, 98–102
 β-conglycinin (7S) soy protein 66–67
 β-lactoglobulin 68–69
 high-pressure thawing (HPT) 408–415
dairy products 417–418
 effects on quality of selected foods 415–418
 equipment 409–410
 fish 415, 416
 high-pressure differential scanning calorimetry (HP DSC) 411, 412
 isobaric T-scan 414–415
 isothermal P-scan 411–413
 meat 415, 417
 microbial growth 418
 principle 408–415
 thermo-physical properties of HPT 410–415
tofu 418
 working procedures 409–410
high solid biomaterials
 coupling theory 75–76
 Ferry and Stratton equation 76–77
 free-volume theory 72–75
 glass transition 70–72
 glass transition pressure 76–79
 thermomechanical characterization 72–79
 high-water contents, Gordon Taylor (GT) equation 18–24
 homogeneous nucleation, crystal-melt phase change 127–129
honey
 crystallization 197–199
 glass transition 244
 heating 198–199
 spray drying 244
 stickiness reduction 244
HP DSC see high-pressure differential scanning calorimetry
HPF see high-pressure freezing
HPIT see high pressure-induced thawing
HPP see high-pressure processing
HPT see high-pressure thawing
human immunoglobulin G1 (IGG1),
 differential scanning calorimetry (DSC) 339
hydrated gluten networks 207–219
 above zero temperature relaxations 211–214
biopolymer glasses 207
dough development 219
Fredholm equation 215
glassy state 207–208
gliadin-enriched networks 217
 glutenin-enriched networks 217
mastercurves of viscoelasticity 213–214, 216
mechanical relaxations 210–214
microstructure 208–210, 217–219
polymeric view 219
regularization methods 215
relaxation spectra 214–217
stress relaxation 212–217
subzero temperature relaxations 210–211
thermal transitions 208–210
time-temperature superposition (TTS) 213
viscoelasticity 213–214, 216
hydrocolloids effect, starch pasting properties 437–438

i
ice-cream
 crystallization 194–197
 freezing 196–197
 manufacturing process 195–197
 microstructure 194–195
immunoglobulins
 Fourier transform infrared spectroscopy (FTIR) 88, 99–101
 high-pressure processing (HPP) 86–88, 98–102
 irreversible processes, differential scanning calorimetry (DSC) 327
 isothermal crystallization 186–190
 Avrami equation 186–190
 isothermal titration calorimetry (ITC) 342–363
 applications 348–358
 basic requirements 345–346
 chitosan - β-lactoglobulin 354
 competitive/displacement ITC 359–361
 competitive metal capture 353–354
 continuous ITC 361–362
 enthalpy change 344–345, 347
 entropy change 348
 flavonoids 356
 folding mechanism of proteins (intra-molecular cooperation) 348–349
 food colorants 355
 food fortification 355
 functional principle 342–345
 Gibbs free energy 344, 349
 heat capacity 347–348
 limit of detection 346–347
 macromolecular crowding 350
 miniaturized ITC techniques (micro and nano-ITC) 362
 multi-thermal titration calorimetry (MTC) 362
 oils - macromolecules 356
 phosphorylation 353
 protein characterization 342–363
 protein-DNA/RNA interaction 357–358
 protein interaction (inter-molecular cooperation) prediction 351–358
 protein misfolding 349–351
 protein-protein interaction 351–352
 protein-small molecule interaction 352–357
 protein stability 358
 reverse titration ITC 358–359
 sodium alginate interaction 354
 solubility ITC 361
 thermodynamic parameters 347–348
isothermal titration calorimetry (ITC) (contd.)
types 358–362
vitamins - milk protein 355
\(\alpha \)-synuclein 350, 353
\(\beta \)-lactoglobulin - chitosan 354
ITC see isothermal titration calorimetry

j
Johari-Goldstein \(\beta \)-relaxation, proteins 13–15

k
kinetics, reaction see reaction kinetics
kinetic theory, glass transition 34

l
lactose-whey protein, high-pressure processing (HPP) 83–86
legume starch, starch pasting properties 432
lentil flours, starch pasting properties 438–442, 445–446
lipid crystallization 201–202
polymorphism 201–202
triacylglycerols (TAG) 201–202
lipids
dehydration/dried foods 228
glass transition 228
lysozyme, high-pressure processing (HPP) 68

m
macromolecular crowding
folding mechanism of proteins 350
isothermal titration calorimetry (ITC) 350
macro-regions, state diagrams 251–252, 256
mango powder, glass transition 42–43
mastercurves of viscoelasticity, hydrated gluten networks 213–214, 216
meat, high-pressure thawing (HPT) 415, 417
meat products, pressure shift freezing (PSF) 401–402
melting, crystal-melt phase change 126–130
melting behavior, polylactides (PLA) 267–269
microbial growth
high-pressure freezing (HPF) 407–408
high-pressure thawing (HPT) 418
microbial inactivation, high-pressure processing (HPP) 69–70
micro-regions, state diagrams 256, 258
microstructure
gluten 217–219
hydrated gluten networks 208–210, 217–219
ice-cream 194–195
polylactides (PLA) 269
milk powders, glass transition 41–42
miniaturized ITC techniques (micro and nano-ITC), isothermal titration calorimetry (ITC) 362
mode coupling theories, glass transition 35
molten globular state, pressurized globular proteins 59
monoclonal antibody formulations,
differential scanning fluorimetry (DSF) 367
morphology, crystal-melt phase change 126–130, 131–133
MTC see multi-thermal titration calorimetry
multi-thermal titration calorimetry (MTC),
isothermal titration calorimetry (ITC) 362
muramidase, high-pressure processing (HPP) 68
myoglobin
glass transition 8–18
relaxation dynamics 8–18

n
native protein and heat capacity, differential scanning calorimetry (DSC) 323–324
NMR see nuclear magnetic resonance
non-isothermal crystallization kinetics 190–193
Avrami equation 191–193
non two-state denaturation, differential scanning calorimetry (DSC) 335–337
non two-state transitions, differential scanning calorimetry (DSC) 316–320, 326–327
novel DSCs, differential scanning calorimetry (DSC) 341
nuclear magnetic resonance (NMR) Carr-Purcell-Meiboom-Gill (CPMG) pulse sequence 144
casein 142–143
green coconut water (GCW) 147–148
one-pulse sequence 144
relaxation technique 142–145
white salted noodles (WNS) 144
nucleation, crystallization 183–184
numerical consideration for non-two-state processes, differential scanning calorimetry (DSC) 326–327
numerical consideration for two-state processes, differential scanning calorimetry (DSC) 325–326
numerical investigation on irreversible processes, differential scanning calorimetry (DSC) 327
numerical treatment of DSC data, differential scanning calorimetry (DSC) 325–327

o
oils - macromolecules
 isothermal titration calorimetry (ITC) 356
 protein-small molecule interaction 356
one-pulse sequence, nuclear magnetic resonance (NMR) 144
ovalbumin
 Fourier transform infrared spectroscopy (FTIR) 93–94, 99–101
 high-pressure processing (HPP) 67–68, 93–96, 98–102
Ozawa model
 crystallization 193

P
packaging materials, polylactides (PLA) 261
PAF see pressure assisted freezing
particle size effect, starch pasting properties 438–442
PEG see polyethylene glycol
phase diagram, crystal-melt phase change 122–124
phase equilibrium, crystal-melt phase change 120–122
phases, crystal-melt phase change 120
phases transitions
 classification 124–126
 crystal-melt phase change 120
 first-order transitions 125–126
 Gibbs free energy 125–126
 second-order transitions 126
phase transition time
 pressure assisted freezing (PAF) 406
 pressure shift freezing (PSF) 401
phosphorylation
 isothermal titration calorimetry (ITC) 353
 protein-small molecule interaction 353
PIF see pressure-induced freezing
pineapple powder, glass transition 42–43
PLA see polylactides
plasticizers 159–176
 amyloid protein 163
 biopolymer films 159–176
 classification 160–161
 defining 159
 external 160
 gelatin 163–166
 hydrophilic 161
 hydrophobic 161
 internal 160
 mechanisms of plasticization 161, 162
 polyethylene glycol (PEG) 165, 171–175
 polylactides (PLA) 171–175
 polysaccharide-base films 166–170
 primary 160–161
 protein-based films 161–166
 secondary 161
 starch-based materials 166–170
 thermoplastic starch (TPS) 167–170
types 159–160
urea-plasticized TPS films 167–170
plasticizing effect, water 1, 4, 15
poly (lactic acid) see polylactides (PLA)

polyethylene glycol (PEG)
 plasticizer 165, 171–175
 polylactides (PLA) 171–175

polylactides (PLA) 261–276
 applications 261
 crystallinity 272–276
 crystallization, non-isothermal 276
 crystallization, stereocomplex 274–276
dynamic thermo-mechanical analysis (DMA) 152

Flory-Fox equation 267
glass transition temperature 263–267
isomers 262–263
isomers effect, thermal properties 269
melting behavior 267–269
melting behavior, stereocomplexed PLA 270–271
microstructure 269
non-isothermal crystallization behavior 276
packaging materials 261
plasticizers 171–175
polyethylene glycol (PEG) 171–175
relaxation technique 152
ring opening polymerization (ROP) 269
stereocomplex crystallization 274–276
stereocomplexed PLA, melting behavior 270–271
stereocomplexed PLA, thermal properties 269–271
stereoisomers 262–263
structure 171
thermal properties 261–276
thermal properties, isomers effect 269
thermal properties, stereocomplexed PLA 269–271
thermal property measurement 263
polymerization, ring opening polymerization (ROP) 269
polymorphism
 chocolate 199–201
cocoa butter 199–201
 crystallization 185, 199–201
 lipid crystallization 201–202
 triacylglycerols (TAG) 201–202
polysaccharide-base films, plasticizers 166–170

potato starch, starch pasting properties 446–448
powder stickiness
 dehydration/dried foods 233–234
glass transition 233–234
prediction of folding mechanism, differential scanning calorimetry (DSC) 328–331
pressure assisted freezing (PAF) 404–407
effect of PAF on quality of selected foods 406–407
freezing curve 404–405
phase transition time 406
principle 404–405
super-cooling 405–406
thermo-physical properties of paf 405
pressure-induced freezing (PIF) 407
pressure shift freezing (PSF) 397–404
effect of PSF on quality of selected foods 401
food models 403–404
freezing curve 397–399
freezing temperature 400–401
fruits and vegetables 402–403
initial freezing point 400
meat products 401–402
phase transition time 401
principle 397–399
super-cooling 399–400
thermo-physical properties under PSF 399–401
pressurized globular proteins
 high-pressure processing (HPP) 59
 molten globular state 59
 water penetration 59
protein allostery, folding mechanism of proteins (intra-molecular cooperation) 349
protein-based films plasticizers 161–166
protein characterization by thermal property measurement 305–374
differential scanning calorimetry (DSC) 306–341
Index

465
differential scanning fluorimetry (DSF) 363–369
differential thermal analysis (DTA) 370–371
dynamic thermo-mechanical analysis (DMA) 371
future prospective methods 373–374
isothermal titration calorimetry (ITC) 342–363
thermal conductivity 372–373
thermogravimetric analysis (TGA) 369–370
thermomechanical analysis (TMA) 371
protein-DNA/RNA interaction, isothermal titration calorimetry (ITC) 357–358
protein foaming, thermal conductivity 372–373
protein functionality, globular proteins 49–102
protein gelation
factors affecting 52–53
globular proteins 50–52
protein interaction (inter-molecular cooperation) prediction
isothermal titration calorimetry (ITC) 351–358
protein-DNA/RNA interaction 357–358
protein-protein interaction 351–352
protein-small molecule interaction 352–357
protein misfolding
amyloid protein 349–351, 353
isothermal titration calorimetry (ITC) 349–351
protein-protein interaction, isothermal titration calorimetry (ITC) 351–352
protein quantification, differential scanning fluorimetry (DSF) 366
protein roles, differential scanning fluorimetry (DSF) 369
proteins
amyloid protein 51, 163, 349–351, 353
crosslinking in proteins 59–60
dehydration/dried foods 227–228
emulsification properties 54–55
foaming properties 55
glass transition 8–18, 227–228
Havriliak-Negami function 12–13
high-pressure processing (HPP) 55–63
Johari-Goldstein \(\beta \)-relaxation 13–15
quasielastic neutron scattering (QENS) 13
relaxation dynamics 8–18
time domain dielectric spectroscopy (TDDS) 13
Vogel-Fulcher-Tammann (VFT) equation 13, 15
water-dependence 18–24
protein-small molecule interaction
chitosan - \(\beta \)-lactoglobulin 354
competitive metal capture 353–354
differential scanning fluorimetry (DSF) 367–368
flavonoids 356
food colorants 355
food fortification 355
isothermal titration calorimetry (ITC) 352–357
oils - macromolecules 356
phosphorylation 353
sodium alginate interaction 354
vitamins - milk protein 355
\(\beta \)-lactoglobulin - chitosan 354
protein stability
differential scanning fluorimetry (DSF) 365–369
isothermal titration calorimetry (ITC) 358
thermal conductivity 372
protein unfolding and denaturation, globular proteins 50, 51
protein-water interactions, globular proteins 49–50
\textit{Pseudomonas fluorescens}, high-pressure processing (HPP) 70
PSF see pressure shift freezing pumpkins flour
differential scanning calorimetry (DSC) 150
relaxation technique 150
Index

q
Q_{10} approach
reaction kinetics 37
temperature dependence 37
QENS see quasielastic neutron scattering
quasielastic neutron scattering (QENS),
proteins 13

r
raspberry powder, glass transition 43
reaction kinetics
Arrhenius equation 37–38
basic principle 35–37
first-order reactions 36
Q_{10} approach 37
reaction order 35–37
second-order reactions 37
temperature dependence 37–39
Williams–Landel–Ferry (WLF) equation 38–39
zero-order reactions 36
reaction order, reaction kinetics 35–37
reaction rates
dehydration/dried foods 235
glass transition 235
real-time PCR system, differential scanning
fluorimetry (DSF) 364, 366–367
regularization methods, hydrated gluten
networks 215
relaxation dynamics
myoglobin 8–18
proteins 8–18
sugar solutions/sugar-rich food 3–8, 9
relaxation properties
biopolymers 1–24
food 1–24
relaxation spectra, hydrated gluten
networks 214–217
relaxation techniques 141–154
biopolymers 141–154
casein 142–143, 153
dielectric spectroscopy 146–149
differential scanning calorimetry (DSC) 149–151
dynamic thermo-mechanical analysis
(DMA) 151–154
food 141–154
gluten 153
green coconut water (GCW) 147–148
nuclear magnetic resonance (NMR) 142–145
polylactides (PLA) 152
pumpkin flour 150
soya 153
sweet potato puree–based baby food 149–150
white salted noodles (WNS) 144
yellow–locust pure honey 146–147
reverse titration ITC, isothermal titration
calorimetry (ITC) 358–359
rice bran proteins, yeast fermented,
differential scanning calorimetry (DSC) 340
rice flour, starch pasting properties 431, 438–442
rice starch, starch pasting properties 431, 433
ring opening polymerization (ROP),
polylactides (PLA) 269

s
second-order reactions, reaction kinetics 37
second-order transitions, phase transitions 126
skim milk, glass transition 42
small molecule-protein interaction see
protein-small molecule interaction
sodium alginate interaction
isothermal titration calorimetry (ITC) 354
protein-small molecule interaction 354
solubility ITC, isothermal titration
calorimetry (ITC) 361
soya
dynamic thermo-mechanical analysis
(DMA) 153
relaxation technique 153
soyabean, differential scanning calorimetry
(DSC) 340
soybean (SPI) and cornstarch (CS) mixture,
differential scanning calorimetry
(DSC) 340
soy glycinquin
Fourier transform infrared spectroscopy (FTIR) 90, 99–101
high-pressure processing (HPP) 88–92, 98–102
time-temperature superposition (TTS) 91–92
soy proteins
glycinin (11S) soy protein 65–66
high-pressure processing (HPP) 65–67
ovalbumin 67–68
β-conglycinin (7S) soy protein 66–67
spray drying 239–247
artificial neural networks (ANNs) 243
caking 241–242
deposition 241–242
fruit powders 244–245
glass transition 240
honey 244
spray drying system 239–240
stickiness 241–246
sugar solutions/sugar-rich food 240–247
sweet potato 245–246
Tg values/profile 242–243, 247
Staphylococcus aureus, high-pressure processing (HPP) 70
starch-based materials, plasticizers 166–170
starch pasting properties 427–448
blends of starches 446–448
chestnut flour 442–445, 446–448
corn starch 434
drying effect 442–445
emulsifiers effect 437–438
 guar gum 437–438
high-pressure processing (HPP) 445–446
hydrocolloids effect 437–438
legume starch 432
lentil flours 438–442, 445–446
particle size effect 438–442
pasting profile 428–429
potato starch 446–448
rheological measurement 430
rice flour 431, 438–442
rice starch 431, 433
starch pasting cell 430–436
water chestnut flour 438–442
xanthan gum effect 436, 437–438
state diagrams 251–258
applications 256–258
BET-monolayer line 255–258
boundaries 251–254
eutectic points 253, 254
food stability determination 256–258
freezing points 253, 254
glass transition 252–253
macro-regions 251–252, 256
micro-regions 256, 258
solids-melting lines 255
water boiling lines 255
stereocomplexed PLA
melting behavior 270–271
thermal properties 269–271
stickiness
fruit powders 244–245
glass transition 241–246
honey 244
reducing 243–246
spray drying 241–246
sugar solutions/sugar-rich food 241–246
sweet potato 245–246
strawberry, water dynamics 6–8, 9
strawberry powder, glass transition 43
stress relaxation
hydrated gluten networks 212–217
time-temperature superposition (TTS) 213
structural relaxations
dehydration/dried foods 229–232
‘Food Stability Map’ 232, 233
glass transition 229–232
structural relaxation times 229
thermal plasticization 229–231
water plasticization 229–231
sugars
glass transition 39–41
thermomechanical analysis (TMA) 39
sugar solutions/sugar-rich food
caking 241–242
dehydration/dried foods 226–227
deposition 241–242
sugar solutions/sugar-rich food (contd.)
glass transition 3–8, 9, 226–227
relaxation dynamics 3–8, 9
spray drying 240–247
stickiness 241–246
\(T_g \) values/profile 242–243, 247
Vogel-Fulcher-Tammann (VFT) equation 6, 8
supercooled liquids, \(\alpha \)-relaxation 5–8
super-cooling
 defining 399
 high-pressure freezing (HPF) 399–400
 pressure assisted freezing (PAF) 405–406
 pressure shift freezing (PSF) 399–400
sweet potato
 glass transition 245–246
 spray drying 245–246
 stickiness reduction 245–246
sweet potato puree–based baby food
 differential scanning calorimetry (DSC) 149–150
 relaxation technique 149–150
thermal conductivity
 protein characterization 372–373
 protein foaming 372–373
 protein stability 372
thermal methods of characterization, future perspectives 373–374
thermal plasticization
 dehydration/dried foods 229–231
 structural relaxations 229–231
thermal properties
 biopolymers 1–24, 141–154
 chitosan 281–283, 290, 293–298
 food 141–154, 1–24
 gelatin 281–293, 298
 gelatin-based film 287–290
 polylactides (PLA) 261–276
 stereocomplexed PLA 269–271
thermal property measurement see protein characterization by thermal property measurement
thermal shift/melt assay see differential scanning calorimetry (DSC)
thermal transitions, hydrated gluten networks 208–210
thermodynamic parameters, isothermal titration calorimetry (ITC) 347–348
thermodynamics, crystal-melt phase change 120–124
thermodynamic theory, glass transition 34–35
thermogravimetric analysis (TGA)
 chitosan 296
 gelatin 290–293
 protein characterization 369–370
thermomechanical analysis (TMA)
 protein characterization 371
 sugars 39
thermomechanical characterization, high solid biomaterials 72–79
thermoplastic starch (TPS), plasticizers 167–170
time domain dielectric spectroscopy (TDDS), proteins 13
Index

time-temperature-pressure effect on the vitrification of high solid systems 70–79
time-temperature superposition (TTS) free-volume theory 72
hydrated gluten networks 213
stress relaxation 213
TMA see thermomechanical analysis
tofu, high-pressure thawing (HPT) 418
tomato powder, glass transition 42–43
TPS see thermoplastic starch
triacylglycerols (TAG)
 lipid crystallization 201–202
 polymorphism 201–202
TTS see time temperature superposition
tubular starch, starch pasting properties 433
two-state denaturation, differential scanning calorimetry (DSC) 333–335
two-state denaturation of protein-ligand complex, differential scanning calorimetry (DSC) 333–334
two-state denaturation with a permanent change in the heat capacity, differential scanning calorimetry (DSC) 334–335
two-state denaturation with self-association or dissociation, differential scanning calorimetry (DSC) 333
two-state transition, differential scanning calorimetry (DSC) 325–326
two-state transition with a permanent change in the heat capacity, differential scanning calorimetry (DSC) 313–316

u
urea-plasticized TPS films 167–170

v
van’t Hoff equation 309, 312–313, 318, 325–327
VFT see Vogel-Fulcher-Tammann equation

viscoelasticity, hydrated gluten networks 213–214, 216
vitamins - milk protein
 isothermal titration calorimetry (ITC) 355
 protein-small molecule interaction 355
Vogel-Fulcher-Tammann (VFT) equation
derhydration/dried foods 229–231
glass transition 226, 229
proteins 13, 15
sugar solutions/sugar-rich food 6, 8

W
 water
 effects on food and biopolymers 1–3, 31–32
glass transition temperature 1–6, 11, 13, 19, 21, 22–23
 plasticizing effect 1, 4, 15, 19
water chestnut flour, starch pasting properties 438–442
water-dependence, proteins 18–24
water dynamics, strawberry 6–8, 9
water-glycerol solutions, Gordon Taylor (GT) equation 18–24
water-ice transitions 393–418
freezing processes 393–394
high-pressure freezing (HPF) 396–408
high-pressure processing (HPP) 394–396
ice-crystal formation 393–396
 steps 393
thawing of frozen products 394
water penetration, pressurized globular proteins 59
water plasticization
 dehydration/dried foods 229–231
 structural relaxations 229–231
water role, phase transition of food 124
whey protein
 glass transition 41–42
high-pressure processing (HPP) 68–69, 79–86, 98–102
whey protein (contd.)
 with lactose 83–86
 structural properties 79–86
white salted noodles (WNS)
 nuclear magnetic resonance (NMR) 144
 relaxation technique 144
Williams–Landel–Ferry (WLF) equation
 dehydration/dried foods 226, 229, 231–232
 free-volume theory 33–34, 74–75
 glass transition 226, 229, 231–232
 reaction kinetics 38–39
 temperature dependence 38–39

x
 xanthan gum effect, starch pasting properties 436, 437–438

y
 yellow–locust pure honey
dielectric spectroscopy 146–147
 relaxation technique 146–147

z
 zero-order reactions, reaction kinetics
 36