INDEX

Page numbers followed by “f” and “t” indicate figures and tables.

ACRE, 48
Age-band decomposition (ABD), 9
Alaska
context of dendroclimatic studies in, 19–20
divergence problem and, 38
impacts of global warming on, 3
overview of studies in, 14–15, 16f, 17f, 26t
Alberta, Canada, 20
Allan, Rob, 48
Alps, 21, 27t
Altai Mountains, 21
Amplitudes, quantification of, 43
Anthropogenic trends
CO₂ fertilization, 37–38
divergence problem and, 38–41, 39f
Arctic National Wildlife Refuge, 14, 38
Atmosphere-ocean climate dynamics, 48
Autocorrelations, ring-width
chronologies and, 10

Biome shifts, overview of, 3–5
Black spruce (Picea mariana), 20
Boreal forests, overview of biome
shifts in, 3–5
Bristlecone pine series, 25, 37
Cambial cell division, 24
Canada, 13, 14f, 20, 26t, 44f
Carbon dioxide increases, 48
Carbon dioxide fertilization, 25, 37–38
CE. See Coefficient of Efficiency
CFR. See Climate field reconstructions
Challenges, 43, 48–49. See also
Divergence problem
Challenge-type reconstructions, 48
Climate field reconstructions (CFR), 28, 48
Climatic reconstructions.
See Temperature reconstructions
CO₂ fertilization, 25, 37–38
CO₂ increases, 48
Coefficient of Efficiency (CE), 38
Coldest decades, 28t
Coppermine River, 15
Cross-dating, overview of, 1–2
D’Arrigo, Rosanne, 8
Data assimilation, 35
Data-model comparison, 35
Davi, Nicole, 8
Dendrochronology
basic principles of, 1–3
initial studies, 7–8
ring width, maximum latewood
density and, 9–11
site selection, 8–9
Dimensionless tree-ring chronologies, 9
Divergence problem, 5, 38–41, 39f, 48
Drought stress, 38, 40

Dendroclimatic Studies: Tree Growth and Climate Change in Northern Forests,
Monograph Number 67. Rosanne D’Arrigo, Nicole Davi, Gordon Jacoby,
Rob Wilson, and Greg Wiles.
© 2014 American Geophysical Union. Published 2014 by John Wiley & Sons, Inc.
End effects, 40
Ensemble reconstructions, 48
Eurasia, 21. See also Specific countries

Fall temperature, prior, 24
False rings, overview of, 2–3
Firth River area, 14, 38
Forward modeling, 34–35, 48

General Circulation Model (GCM), 35
Giddings, James Louis, 7
Glacier Bay National Park and Preserve, 6, 47f
Glen Affric, 47f
Gore, Albert, 24
Groveman and Landsberg (1979) reconstruction, 23

Heartrot Hill, 13, 14f
Hockey stick reconstructions, 25

Icefields region (Alberta), 20
Iceland, 45f
IPCC reports, 25, 28, 48

Jacoby, Gordon, 8
Jacoby and D’Arrigo (1989) reconstruction, 23–24, 25

Kalman filter ensembles, 35
Kamchatka, 17
Kobuk-Noatak-Selawik River drainages, 7
Kugluktuk River, 15
Kurile Islands, Kamchatka, 17

Labrador, Canada, 20, 26t
Labrador Highlands Research Group, 20
Laki eruption, 15, 17f, 45f
Latewood, 10. See also Maximum latewood density
LIA. See Little Ice Age
Light density rings, 20
Limber pine, 37
Linearity, 49
Little Ice Age (LIA), 13, 31–33
Luckman, Brian, 20

Mackenzie River Delta (NWT), 20
Manitoba, 26t
MATRIP project, 17
Maximum latewood density (MXD)
Firth River area and, 14, 38
overview of, 10
MCA. See Medieval Climate Anomaly
Medieval Climate Anomaly (MCA), 31–33, 34, 35
Mendenhall Glacier, 46f
Mongolia. See MATRIP project, 27t, 44f, 45f
Multiproxy data comparisons, 49
MXD. See Maximum latewood density

Networks, 21, 29
Newfoundland, 20
Nonlinear thresholds, 40
North America. See also Specific countries context of dendroclimatic studies in, 19–20
overview of studies used, 26t
Northern Archive, overview of, 6
Northwest Territories, 20, 26t

Oak, 17–18
Oswalt, Wendell, 7

Pacific Decadal Oscillation (PDO), 15
Pacific Decadal Oscillation (PDO) index, 18
Paleoclimatology Challenge, 49
Paleoclimatology Reconstruction Network (PCN), 29
Permafrost zones, 24
Picea glauca (white spruce), 7, 20, 45f, 46f
Picea mariana (black spruce), 20
Pine
bristlecone pine series, 25, 37
limber pine, 37
Scots pine, 47f
Siberian pine, 44f
Pisaric, Michael, 20
Polar amplification, overview of, 3–5, 4f
Pollution, 40
Porter, Trevor, 20
Proxy reconstructions, 35
Proxy Surrogate Reconstructions (PSR), 49
Pseudoproxy analyses, 48

Quebec, Canada, 26t
Quercus crispula, 17–18

Radial growth records, 9
Radiative forcing time series, 48
RCS. See Regional Curve Standardization
RE. See Reduction of Error
Reconstructions. See also Temperature reconstructions
challenge-type, 48
ensemble, 48
hockey stick, 25
proxy, 35
Proxy Surrogate (PSR), 49
Reduction of Error (RE), 38
Regional Curve Standardization (RCS), 9, 30f, 31f, 32f, 33–34, 43
Ring-width data, 10, 24
Rocky Mountains (Canadian), 20
Root zones, 24
Russia, 21

Scandinavia, 21
Schweingruber transect, 21
Scots pine, 47f
Sea ice melting, 3
Segment length curse, 9
Senate hearings on global warming and climate change, 24
Seward Peninsula, 14–15, 19–20, 26t
Siberia, 15, 21, 27t
Siberian larch, 45f
Siberian pine, 44f
Simulations, 34–35
Site selection, 8–9, 48
Smoothing, 10
Snowmelt, 40
Solar dimming, 40
Southern Hemisphere, 43
Spruce
black, 20
white, 7, 20, 45f, 46f
Standardization, 33–35. See also Regional Curve Standardization
Stationarity, 49
Stratospheric ozone declines, 40
Sukakpak, Mount, 14–15

Tambora eruption, 20
Tarvagatay Mountains, 44f
Taymir Peninsula, Siberia, 15, 21, 27t
Temperature reconstructions
  evolution of, 25–31, 26–27t, 28t, 29f, 30f, 31f
  initial attempts, 23–24
  overview of, 5
  standardization of, 33–35
  trends of, 31–33
Thelon River sanctuary, 15
Tornetaesk, 26t
Tree mortality, 5
Tree-ring parameters, 9–11
TRL-LDEO, history of, 8
TRL-LDEO Northern Archive, 6
Twisted Tree-Heartrot Hill (TTHH), 13, 14f

Ultraviolet radiation, 40
Uncertainty reduction, 48
Uniformitarianism, 49
United Kingdom, 21
Ural Mountains, 21, 27t

Van Stone, James, 7
Volcanic eruptions, 15, 17f, 20, 45f

Warmest decades, 28t
White River Ash, 45f
White spruce (Picea glauca), 7, 20, 45f, 46f
Wiles, Greg, 8
Wilson, Rob, 8, 20
Wilson and colleagues (2007) reconstruction, 40
Wrangell St. Elias National Park, 26t, 44f

Yakutia, 21, 27t
Yamal, 21
Yellowknife, Northwest Territories, 20
Yukon Territory, 13, 14f