Index

2SLS method see two-stage least squares method
3SLS method see three-stage least squares method
accelerated importance sampling (AIS) 248
ADF method see augmented Dickey–Fuller method
adjustment dynamics 7–8
Ahn and Schmidt moment conditions 164–7
air pollution levels example 41, 60
AIS see accelerated importance sampling
Amemiya and MaCurdy (AM) method 143–5, 147
Amemiya method 28–9, 43, 47, 51, 53
see also Wansbeek–Kapetyn procedure
ANOV A F-test 72–3
ANOVA methods 72–3, 190–1, 194–5, 203–4
AR(1) process 96–8, 100–3, 105–6, 109–17
see also autoregression; serial correlation
AR(2) process 98–9, 104
AR(4) process 99, 104
Arellano and Bond estimator 157–61, 178, 180–1
Arellano and Bover estimator 161–4
Arellano test 78, 80, 94
artificial regression, Hausman test 89 asymptotics
Levin, Lin and Chu test 279
macro panels 275–6
panel cointegration models 314
residual-based LM test 286
spatial panel data 334–5
standard error downward bias 160–1
attrition 9–10, 254, 263–4
augmented Dickey–Fuller (ADF) method
nonstationary panels 278–80, 288–9
residual-based 293–4
spatial panel data 331
Australian Household, Income and Labour Dynamics 4
autocorrelation 115–19, 337–8
see also serial correlation
autoregression
simple models 173–4
spatial panel data 324, 330, 336
vector autoregressions 179–80, 309
balanced panels, definition 187
Baltagi, Demetriades and Law’s dynamic panel data model 182
Baltagi, Griffin and Rich’s SUR procedure 126
Baltagi and Rich’s SUR procedure 126–7
Becker, Grossman and Murphy’s dynamic panel data model 181–2
behavioural models 8
Beierlein, Dunn and McConnon’s SUR procedure 125–6
best linear unbiased estimator (BLUE) 15, 24
best linear unbiased predictor (BLUP) 26, 49, 329
best quadratic unbiased (BQU) estimators 21–2, 43, 97, 190
between estimators
efficiency testing 89–90
Hausman test 82
one-way random effects model 22
pooled models 221–2
public capital productivity 32
BFN (Bhargava, Franzini and Narendranathan) 109–10
BGT test see Burke, Godfrey and Termayne test Bhargava, Franzini and Narendranathan (BFN) 109–10
BHPS see British Household Panel Survey bias
efficiency trade-off 161
estimated asymptotic standard errors 160–1
GMM estimator 161
bias (continued)
rotating panels 218
selection bias 254–8
within-group 2SLS 148
bias-corrected LM tests 335
binary-choice panel data 251, 273
binary response model regression (BRMR) 272
Biorn’s SUR procedure 126
birth cohorts, pseudo panels 219
BLUE see best linear unbiased estimator
Blundell and Bond GMM estimator 167–8
Blundell’s dynamic panel data model 181
BLUP see best linear unbiased predictor
BMS method see Breusch, Mizon and Schmidt method
Bond’s dynamic panel data 182
spatial panel data 334
two-way random effects model 57–8
BQU estimators see best quadratic unbiased estimators
Breitung’s test 282–3
Breusch, Mizon and Schmidt (BMS) method 142–4, 145
Breusch–Pagan test 68–70
British Family Expenditure Survey 218
British Household Panel Survey (BHPS) 3, 251
BRMR see binary response model regression
Burke, Godfrey and Termayne (BGT) test 110–15
CADF (cross-sectionally augmented Dickey–Fuller) test 289
Canada’s Survey of Labor Income Dynamics 3
CCE estimator see common correlated effects estimator
CD see cross-sectional dependence
censored panel data models 258–63
Chamberlain test 78–9, 241–3, 245–6, 249–50
changes-in-changes (CIC) estimator 18–19
Chow test 65, 67–8
CIC (changes-in-changes) estimator 18–19
cigarette demand example 175–9
CIPS statistic 289–90
Cobb–Douglas production function 29, 31, 52–3, 204–5
cohort population, definition 219
cohorts, pseudo panels 218–20
cointegration models 299–303, 314
cointegration tests 293–9, 306–9, 313–14
collinearity reduction 7
combined p-values test 283–5
common breaks, panel data 311
common correlated effects (CCE) estimator 313, 336
complete panels, definition 187
computational notes/warnings
fixed effects model 15–16, 41
Hausman and Taylor estimator 144
one-way error component regression 15–16, 34	
two-way error component regression 41, 53
conditional likelihood
count panel data 230
logit/probit models 240–1, 243
conditional LM tests 72
conditional logit estimates 240, 265–6
consistency
GMM estimator 159, 171
pseudo panel cohorts 219
controls
DID estimator 19
individual heterogeneity 6–7
Cornwell and Trumbull (CT) estimator 132, 134–5
correlated effects tests 89
count panel data 228–35
country size, two-way error component model 41, 60
CPS see Current Population Survey
crime models, North Carolina example 132–7
criterion-based inference, GMM estimator 160
cross-equations, SURs 123
cross-firm correlation, ρ values 116
cross-sectional data 7–8
heteroskedastic panel regression 115–19
one-way fixed effects model 16
pseudo panels 218
time-series studies 66
two-way error component regression 53
cross-sectional dependence (CD)
factor-based 312
GMM 337
nonstationary panels 276, 287–91, 312
panel data limitations 10
tests 287–91, 332–6
unit root tests 287–91
cross-sectional independence, unit root tests 277–86
cross-sectionally augmented Dickey–Fuller (CADF) test 289
CT estimator see Cornwell and Trumbull estimator
Current Population Survey (CPS) 2, 213, 218, 220
data collection limitations 8
de-meaned regressors 334
degrees of freedom, panel data 7
democracy and education example 177–8, 180–1
dependent variables
count panel data 228
Keane and Runkle estimator 168
limited 239–73
design problems, panel data 8
designing experiments, random effects
 model 46–7
Dickey–Fuller (DF) tests 293–4
 see also augmented Dickey–Fuller method
difference-in-differences (DID) estimator 17–20
distortion, measurement errors 8–9
DOLS estimator see dynamic least squares
 estimator
doubly exogenous variables 147–8
downward bias, standard errors 160–1
DTP (Dutch Transportation Panel) 263
Durbin–Watson statistic 109–10
Dutch Transportation Panel (DTP) 263
dynamic factor models 287–8
dynamic least squares (DOLS) estimator 295,
 299–301, 308
dynamic panel data models 155–85
censored/truncated 262–3
test examples 175–9, 264–5
 further development 172–5
heterogeneous panels 223–4
limited dependent variables 248–53
 problems 183–5, 310
 pseudo panels 220–1
selected applications 179–88
short-run versus long-run estimates 222
spatial 336–7
dynamics of adjustment 7–8
earnings equation, PSID 144–7
EC2SLS see error component two-stage least
 squares estimator
EC3SLS see error component three-stage least
 squares estimator
ECHP see European Community Household
 Panel
economic growth problem 154, 228
economic models, crime 132–7
economic policies, two-way error component 41,
 60–1
education and democracy example 177–8,
 180–1
effects
 see also fixed effects; individual effects;
 random effects model; time effect
 common correlated effects estimator
 313, 336
measuring/identifying 8
one-way fixed effects model 14–20, 24–5
one-way random effects model 20–5
 period effects 53
serial correlation 101–2, 105–9
spillover effects 305–8, 319, 322
state-specific effects 175–6
tests for 68–76, 89, 200–3
two-way fixed effects model 39–41, 53,
 55, 85–6
two-way random effects model 42–7, 53,
 56–8, 85–6
unobservable effects 13, 39, 229, 242
efficiency
 between versus within estimator 89–90
 bias trade-off 161
gains, GMM estimator 168
GMM estimator 161, 168
panel data benefits 7
EGLS (feasible GLS) 93–4
empirical applications
 count panel data 233–5
cross-sectional heteroskedasticity 117–19
dynamic panel data models 175–9
 limited dependent variables 263–8
 nonstationary panels 303–9
 simultaneous equations 132–7, 144–7
two-way fixed effects model 41
unbalanced panel data 194–7, 204–8
endogeneity
 DID estimator 18
 single equation estimation 129
equal weight spatial autocorrelation 338
equidispersion property 232–3
error component disturbances, poolability 87
error component regression model 91–122
AR(1) against MA(1) testing 110–12
Haussman test 76
heteroskedasticity 91–5, 115–19, 120, 122
homoskedasticity testing 94–5
one-way 13–37, 123–4, 187–93
 serial correlation 96–115, 120–1
 simultaneous equations 129–54
 spatial panel data 319–24, 337
SUR approach 123–7
three-way 53, 58–9, 210–11
two-way 39–61, 84–6, 124–5, 197–200
unbalanced panel data 187–93, 197–200,
 203–8, 210–11
error component three-stage least squares
 (EC3SLS) estimator 138–40, 150–1, 328
error component two-stage least squares
 (EC2SLS) estimator 130–2, 135–7, 140, 148
errors see measurement errors; standard errors
 estimated asymptotic standard errors 160–1
 estimation in cointegration models 299–303
European Community Household Panel
 (ECHP) 3
EViews 27–8, 50–1, 75, 85
exchange rates example 304–5
exogenous variables
 dynamic panel data 250
 Keane and Runkle estimator 169
 simultaneous equations 147–8
Index

experimental design, two-way random effects 46–7
extraneous variables 213

F-tests 72–3, 76
see also ANOVA methods; Chow test
factor-based cross-sectional dependence 312
factor models 287–8, 314
FD estimator see first differencing estimator
FE model see fixed effects
feasible GLS (EGLS) 93–4
finite-sample properties 298–9
first differencing (FD) estimator 17, 19, 156, 169, 224
first-generation panel unit root test 286
first-order serial correlation
 dynamic panel models 159
 fixed effects model 108–9
 random effects model 107–8
Fisher tests 283–4, 307
fixed effects (FE)
 censored/truncated panel data 259–61
 count panel data 229, 231–2
 dynamic panel data models 155–6, 173, 336
 economics of crime model 134
 first-order serial correlation model 108–9
 Hausman and Taylor estimator 141
 logit/probit models 239–46
 Mundlak’s result 151
 nonstationary panels 280
 one-way model 14–20, 24–5
 public capital productivity 32
 spatial panel data 324, 336
 testing for 15, 40–1, 76, 79, 81, 84, 108–9, 148–9
 time-invariant variables omission versus 153
 two-way model 39–41, 53, 55, 85–6
 unbalanced panel data 198, 210–11
fixed-T approach 280–1
FM estimator see fully modified estimator
FMLS see fully modified least squares
forecasts using spatial panel data 329–30
foreign aid problems 154
foreign R&D (FRD) stocks example 305–7
freedom see degrees of freedom
fully modified (FM) estimator 295, 300–1, 307
fully modified least squares (FMLS) 307
 Gary Income Maintenance Experiment 263
gasoline demand data
 Hausman test 82–3
 heterogeneous panels 225
 one-way error component regression 28–9
 poolability testing 63, 68
 two-way error component regression 52, 54
 Gauss–Hermite quadratic procedure 244
gauss–Newton regression (GNR) 80
GDP (gross domestic product), health care 308–9
generalized least squares (GLS) estimator 18, 21, 23–4, 43–7, 50
dynamic panel data models 173
examples 27, 29, 31, 52–3, 144–5
Hausman test 76–7, 80, 83–4
heteroskedasticity 92–4, 115–16
measurement errors 216
problems 56
rotating panels 217–18
seemingly unrelated regressions 124
selection bias 254–6
serial correlation 99, 102, 114–15
spatial panel data 328–30
spurious regression 292
unbalanced panel data 188, 200
generalized method of moments (GMM)
estimator 115, 156, 158
Ahn and Schmidt model 164, 166–7
Arellano and Bond model 163–4
Blundell and Bond system 167–8
censored/truncated panel data 259, 261
cigarette demand example 177–9
consistency of 159
democracy equation example 181
further developments 172–3, 175
limited dependent variables 269
LIML comparison 171–2
logit/probit models 246
measurement errors 215–16
moment conditions 161
nonstationary panels 297
pseudo panels 220–1
spatial panel data 321, 337
weight matrix 160
generalized moments (GM) estimation 321–2
German Socio-Economic Panel (GSOEP) 3
GHM test see Gourieroux, Holly and Monfort test
GLS estimator see generalized least squares estimator
GLSAD, heteroskedasticity 93–4
GLSH, heteroskedasticity 94
GM estimation see generalized moments estimation
GMM estimator see generalized method of moments estimator
GNR see Gauss–Newton regression
Gourieroux, Holly and Monfort (GHM) test 71–2, 202–3
government size, two-way error component
 model 41, 60
gravity models, intra-EU trade 153–4
gross domestic product (GDP), health care 308–9
growth convergence problem 10
Grunfeld’s data
common ρ 116
different ρ 116–17
Hausman test 81–2, 85
individual/time effects 74–6
one-way error component 27–30
poolability tests 67
serial correlation 101–3
two-way error component 50–2, 54
GSOEP see German Socio-Economic Panel

Harrison–Rubinfeld hedonic housing
equation 195
Hausman and Taylor (HT) estimator 141–6, 149, 313, 324
Hausman test 76–86
artificial regression 89
examples 81–4
logit/probit models 241–2
simultaneous equations 141–4, 148–9, 152–3
slope homogeneity 87
two-way error component model 84–6
health care expenditures (HCE), OECD 307–9
 Heckman’s dynamic panel data 248–9
hedonic housing equation example 194–7
 Henderson, Fuller and Battese (HFB) method 191

dynamic panel data models 156
individual, controls for 6–7
nonstationary panels 276, 281, 314
spatial error component regression model 319
heterogeneous panels 222–8, 310
heteroskedasticity 91–5, 115–20, 122
HFB method see Henderson, Fuller and Battese method
HILDA see Household, Income and Labour
Dynamics in Australia
Holtz-Eakin, Newey and Rosen’s dynamic panel
data model 179–80
homicide rates example 41, 60–1
homogeneity
in heterogeneous panels 223
slope homogeneity 87
homoskedasticity testing 94–5
Honda test 70–1
Household, Income and Labour Dynamics in
Australia (HILDA) 4
housing equation example 194–7
HT estimator see Hausman and Taylor estimator
HUS see Swedish Panel Study of Market and
Non-Market Activities
hypotheses testing 63–90

idiosyncratic disturbances, spatial panel data 334
idiosyncratic share parameters 288
IFLS see Indonesia Family Life Survey

ignorable selection rules 254
IID see independent and identical distribution
Im, Pesaran and Shin’s test 281–4, 331
IMF see International Monetary Fund
IMLE see iterative maximum likelihood
estimation
incidental parameters problem 239–40
incomplete panels see unbalanced panel data
inconsistency, standard errors estimation 16
independence assumption, unit root tests 277–86
independent and identical distribution (IID)
censored/truncated panel data 261
heterogeneous panels 223–4
one-way fixed effects model 14
one-way random effects model 20
rotating panels 217
selection bias 254
unbalanced panel data 203

individual effects
see also unobservable effects
illustrative test example 74–6
logit/probit models 242
tests for 68–76, 105–12, 113–14, 200–3
two-way error component regression 39
individual heterogeneity controls 6–7
informative data benefits 7
initial condition assumption/problem 168,
251–2, 272–3
instrumental variable (IV) methods 129
earnings equation 144–5
maximum likelihood estimation 173
nonstationary panels 285, 301
weak instrument problem 174
International Monetary Fund (IMF) 4–5
international R&D spillover example 305–8
intra-EU trade gravity models 153–4
IPS test see Im, Pesaran and Shin test
iterative maximum likelihood estimation
(IMLE) 28
IV methods see instrumental variable methods

Japanese Panel Survey on Consumers (JPS) 3–4
Johansen Fisher panel cointegration test 307, 309
John’s test 335
joint asymptotic analysis 276, 286
joint limit theory 277–8
joint LM tests
homoskedasticity 95
serial correlation 105–7, 113–14
JPSC see Japanese Panel Survey on Consumers

Kao tests 293–4, 306
Kapoor, Kelejian and Prucha (KKP) estimator
323–4
368 Index

Keane and Runkle (KR) estimator 168–70
Keane’s simulation estimation 247
kernal choices 279
King–Wu test 70–1
KKP (Kapoor, Kelejian and Prucha) estimator 323–4
Korea Labor and Income Panel Study (KLIPS) 4
KPSS test 285–6
KR (Keane and Runkle) estimator 168–70
Kyriazidou’s censored/truncated panel data 260
labour demand, SUR application 125, 126–7
labour supply, nurses 265–8
lagged dependent variables 168
Lagrange multiplier (LM) tests 68–72, 74–5, 83
homoskedasticity 95
PPP 311
residual-based 285–6, 294–6
selection bias 255
serial correlation 105–8, 113–15
spatial panel data 320–1, 323, 328, 332–3, 335
unbalanced panel data 200–2
lags
see also lagged dependent variables
number of 279
panel unit root tests 304–5
spatial panel data regression model 325–9
latent dependent variables 261
LBI see locally best invariant
least squares dummy variables (LSDV) 14, 15, 189
see also fixed effects
least squares methods
see also generalized least squares estimator;
ordinary least squares
3SLS 138–40, 148, 150–1, 328
DOLS estimator 295, 299–301, 308
FMLS 307
WLS 188
left-wing party strength example 41, 60
levels restrictions, GMM estimator 168
Levin, Lin and Chu (LLC) test 278–81, 282–4, 303–4, 331
likelihood-based cointegration test 297–8
likelihood estimation see maximum likelihood estimation
likelihood ratio (LR) test 72–3, 323, 328–9
limit theory, nonstationary panels 277–8
limited dependent variables 239–73
dynamic panel data models 248–53
empirical applications 263–8
problems 271–3
simulation estimation 247–8
limited information maximum likelihood (LIML) 171–2
Lindeberg–Lévy central limit theorem 284
linear methods see best linear unbiased . . .
Living Standards Measurement Study (LSMS) 2–3
LLC test see Levin, Lin and Chu test
LM tests see Lagrange multiplier tests
LMMP test see locally mean most powerful test
locally best invariant (LBI)
nonstationary panels 294
serial correlation 101–2
locally mean most powerful (LMMP) test 70–1, 202
log effects, international R&D example 305–7
logit models 239–46, 265–6, 271–2
long-run estimates, pooled models 221–2
long time series, DID estimator 18
LR test see likelihood ratio test
LSDV see least squares dummy variables
LSMS see Living Standards Measurement Study
MA(1) process 99–100, 104–6, 109–15
see also moving averages
macro panels
asymptotics 275–6
examples 4–5
Manski’s maximum score 242–3
matched panels, problems 237–8
maximum likelihood estimation (MLE) 25–6, 47–9
AR(1) disturbances 102
Breusch–Pagan test 69
censored/truncated panel data 261
dynamic panel data 251
examples 28, 33
homoskedasticity 95
limited dependent variables 269
LIML 171–2
logit/probit models 240–5
LR test 73, 75
problems 56
QMLE 309
spatial panel data 320–1, 323–4
spurious regression 292
unbalanced panel data 191–2, 194–6, 199–200, 206
mean group estimator 86–7
mean nonstationary variables, GMM estimator 168
mean square error (MSE) prediction 26–7, 46–7, 66–7, 193
mean squared deviation, logit/probit models 243
measurement errors 8–9, 213–16, 235–6
method of simulated moments (MSM) 247–8
micro panels
examples 1–4
measurement errors 213
mild stationarity restriction, GMM estimator 167
Mincer wage equation
Amemiya and MaCurdy method 147
Hausman and Taylor estimator 146
minimum distance random effects probit 245–6
minimum norm quadratic unbiased estimation (MINQUE) 24, 45, 192–3
minimum variance quadratic unbiased estimators (MIVQUE) 192–3
minimum variance unbiased (MVU) estimator 43, 64, 192–3
MINQUE method see minimum norm quadratic unbiased estimation
missing at random condition 258
misspecification problems, variance components 57
MIVQUE see minimum variance quadratic unbiased estimators
mixed models, error component regression 53, 59–60, 85–6
MLE see maximum likelihood estimation
MMLE see modified maximum likelihood estimator
modelling
see also dynamic panel data models; factor models; regression models
censored/truncated panel data 258–63
cointegration models 299–303, 314
heteroskedasticity 91–5, 115–20, 122
hypotheses testing 76
logit/probit models 239–46
one-way error component regression 13–37, 123–4, 187–93
panel data benefits 8
pooled models 221–2, 279
seemingly unrelated regressions 123–7
serial correlation 96–115, 120–1
simultaneous equations 129–54
spatial panel data 319–62
two-way error component regression 39–61, 84–6, 124–5, 197–200
unbalanced panel data 187–211
modified maximum likelihood estimator (MMLE) 251
moment conditions
see also generalized method of moments estimator
Ahn and Schmidt 164–7
GMM estimator 161
Monte Carlo evidence
censored/truncated panel data 259
dynamic panel models 159, 170, 253
Hausman test 78
heterogeneous panels 226
individual/time effects 73–4
logit/probit models 245
poolability testing 67, 87
simulation estimation 247
spatial panel data tests 331–2
unbalanced panel data 193
moving averages 99–100, 104–6, 109–15, 323, 330
MSE prediction see mean square error prediction
MSM see method of simulated moments
Mundlak’s estimator 141–2, 151
MVU estimator see minimum variance unbiased estimator
National Longitudinal Surveys (NLS) 1–2, 34, 79
natural experiments, DID estimator 17–18
NB distribution see negative binomial distribution
nearly non-identified instruments 148
negative binomial (NB) distribution 230, 232–4
nested error components models 53, 58, 203–8
NLS see National Longitudinal Surveys
no cointegration null hypothesis 293–4, 296, 313–14
nonignorable selection rules 254
nonlinear moment conditions 164
nonresponse limitations 9
nonstationary panels 275–318
empirical examples 303–9
problems 315–18
spatial panel data 336–7
nonstationary variables, GMM estimator 168
nonzero bounded constant, spatial panel data 334
North Carolina crime example 132–7
null hypotheses
no cointegration 293–4, 296, 313–14
serial correlation 107
spatial panel data 335
nurses’ labour supply example 265–8
OECD see Organization for Economic Co-operation and Development
OLS see ordinary least squares
one-way error component regression
model 13–37
examples 27–33
problems 35–7
selected applications 34
SUR approach 123–4
unbalanced panel data 187–93
one-way fixed effects model 14–20, 24–5
one-way random effects model 20–5
openness example, two-way error component model 41, 60
ordinary least squares (OLS)
cointegration models 299–302
DID estimator 20
elements 27, 29, 31, 52–3
Hausman test 78, 83, 149
heterogeneous panels 223
heteroskedasticity 94–5, 115–16
individual/time effects 75
measurement errors 213–14
one-way fixed effects model 14
one-way random effects model 22–4
poolability tests 67
problems 56
rotating panels 217
serial correlation 97–8, 111
spurious regression 292
two-way fixed effects model 40
two-way random effects model 43–6, 50
unbalanced panel data 189, 194, 204, 208
Organization for Economic Co-operation and Development (OECD)
economic growth 228
gasoline demand data 63, 225
health care expenditures 307–9
IPS test 282
macro panels 5
PPP 303–5
over-identification restrictions, dynamic models 158–60
over-specification, variance components 57
overdispersion 232
p-value tests 283–5
panel cointegration
models 299–303, 314
tests 293–9, 306–9, 313–14
panel data
basic references 5–6
benefits 6–8, 11
common breaks in 311
elements 1–6
hypotheses testing with 63–90
limitations 8–11, 254, 263–4
special topics 213–38
use rationale 6–11
panel factor model 314
panel regression 115–19
see also regression models
Panel Study of Income Dynamics (PSID) 1–2, 9–10, 34, 63, 144–7, 213
panel unit root tests 310–11
cross-sectional dependence 287–91
cross-sectional independence 277–86
empirical examples 304–5
first-generation 286
spatial dependence 330–2
panel vector autoregressions (PVARs) 309
participation equation example 266
Pedroni tests 296–7, 306, 308
Penn World Table (PWT) 4, 275
period effects, two-way error components 53
Pesaran, Ullah and Yamagata (PUY) test 333, 335
Poisson panel regression 228–33, 235
political governance example 41, 60–1
pooled estimation results, cigarette demand 177
pooled models
nonstationary panels 279
short-run versus long-run estimates 221–2
population, cohorts 219
post-treatment period, DID estimator 17
power of tests 256, 298
PPP see purchasing power parity prediction
one-way error component model 26–7
problems 56
serial correlation 102–5
spatial autocorrelation error component model 337
two-way error component model 49–50
principal components analysis 310
probit models 239–46
problems/solutions reference list 361–2
pseudo panels 218–21
PSID see Panel Study of Income Dynamics
public capital productivity data 31–3, 52–3, 55, 206–7
purchasing power parity (PPP) 10, 276, 303–5, 311
PUY test see Pesaran, Ullah and Yamagata test
PVARs see panel vector autoregressions
PWT see Penn World Table
QMLE see quasi-maximum likelihood estimator
quadratic procedures, logit/probit models 244
quadratic unbiased estimator (QUE) 199
see also best quadratic unbiased estimators; minimum norm quadratic unbiased estimation
quarterly data, AR(4) process 99
quasi-maximum likelihood estimator (QMLE) 309
QUE see quadratic unbiased estimator
R&D data examples 228, 231–4, 236–8, 305–8
random assignment, DID estimator 17
random effects (RE) model
Index

count panel data 230, 233–4
dynamic panel data 253
economics of crime 135, 137
Hausman test 148–9
logit/probit models 239–46
one-way 20–5
selection bias 258
serial correlation 101–2, 105–8
spatial panel data 326, 338
testing 79, 81–2, 105–7
two-way 42–7, 53, 56–8, 85–6
unbalanced panel data 198–200
random individual effects tests 105–7
RE see random effects model
redundant fixed effects, F-tests 76
redundant instruments 132
refreshment samples 254
regression models 91–122
see also autoregression; between estimators;
error component regression model; within
estimators
binary response 272
count panel data 228–33, 235
cross-sectional heteroskedasticity 115–19
Hausman test 76
heterogeneous static models 223
nonstationary panels 278–80, 288–9, 291–3
one-way error component 13–37, 123–4, 187–93
simultaneous equations 129–54
spatial panel data 319–24, 325–9, 334, 337
SUR approach 123–7, 225, 324
three-way error component 53, 58–9, 210–11
time-wise autocorrelation 115–19
two-way error component 39–61, 67
unbalanced panel data 187–93, 197–200, 203–8, 210–11
REML see restricted maximum likelihood estimator
residual-based DF/ADF tests 293–4
residual-based LM test 285–6, 294–6
residual cointegration test 306, 308
restricted maximum likelihood estimator (REML)
192, 207
restricted residual sum of squares (RRSS)
40–1, 67
ρ values 116–17
RLMS see Russian Longitudinal Monitoring Survey
RMSEs
heterogeneous panels 225, 227
spatial panel data 322
robust estimates
cigarette demand example 178
democracy equation example 180–1
standard errors 16–17
rotating panels 216–18, 236
Roy–Zellner test for poolability 68
RRSS see restricted residual sum of squares
Russian Longitudinal Monitoring Survey (RLMS) 4
sampling
accelerated importance sampling 248
nonstationary panels 298–9
refreshment samples 254
subsampling hypothesis tests 312
SAR disturbances see spatial autoregressive
disturbances
second-order serial correlation 159
seemingly unrelated regressions (SUR)
applications/extensions 125–7
error components 123–7
heterogeneous panels 225
problems 127
spatial panel data 324
selection bias 254–8
selectivity limitations 9–10, 254
self-selectivity 9, 254
sequential asymptotic theory 276, 286
sequential limit theory 277
serial correlation
Arellano and Bover estimator 164
DID estimator 18
error component model 96–115, 120–1
nonstationary panels 310
testing for 105–12, 113–14, 158–60
SFE estimator see spatial fixed effects estimator
short panels, dependent variables 253
short-run estimates, pooled models 221–2
short time-series dimension, panel data 10
simple autoregressive models 173–4
simulation estimation 247–8
simultaneous equations 129–54
single equation estimation 129–32
 singly exogenous variables 147–8
SLID see Survey of Labor Income Dynamics
SLM test see standardized Lagrange multiplier test
slope homogeneity, Hausman test 87
SMA see spatial moving average
SNM see symmetrically normalized GMM
solutions/problems reference list 361–2
spatial autocorrelation 337, 338
SPAR disturbances 324, 330, 336
spatial correlation 319, 329–30, 337–8
spatial dependence, unit root tests 330–2
spatial error component regression model 319–24
spatial error correlation, forecasts using 329–30
spatial error process, nonstationary panels 290
spatial fixed effects (SFE) estimator 324
Index

spatial lag panel data regression model 325–9
spatial moving average (SMA) 323, 330
spatial panel data models 319–62
specification test, Hausman 76–86
spillover effects
 international R&D example 305–8
 spatial models 319, 322
spurious regression 291–3
spurious state dependence 248–9
standard errors
 downward bias 160–1
 economics of crime model 133
 robust estimates 16–17
standardized Lagrange multiplier (SLM) test 70–1, 201–2
state dependence, true versus spurious 248–9
state-specific effects, cigarette demand 175–6
static panel data
 heterogeneous panels 223
 long-run estimates 222
stationarity restriction, GMM estimator 167
Stein rule estimator 86
strictly exogenous variables 250
strong cross-section dependence, spatial panel data 337
suboptimal instruments 161
subsampling hypothesis tests 312
SUR see seemingly unrelated regressions
Survey of Labor Income Dynamics (SLID) 3
Swamy–Arora procedure 28, 30–1, 33, 43, 46, 54, 197
Swedish Panel Study of Market and Non-market Activities (HUS) 3
switched status, logit/probit models 241
symmetrically normalized GMM (SNM) 171
synthetic control, DID estimator 19
system estimation
 GMM 167–8, 179, 181
 simultaneous equations 138–40
testing
 see also Hausman test; Lagrange multiplier tests
 AR(1) against MA(1) 110–15
 behavioural models 8
 cointegration tests 293–9, 306–9, 313–14
 fixed effects 15, 40–1, 76, 79, 81, 84, 108–9, 148–9
 homoskedasticity in error component model 94–5
 hypotheses 63–90
 over-identification restrictions 158–60
 poolability 63–8, 86–90
 power of tests 256, 298
 serial correlation 105–14, 158–60
 spatial panel data 320–1, 323, 330–6
unbalanced panel data use 200–3
unit root tests 277–91, 304–5, 310–11, 330–2
Westlerlund test 311–12
TFP see total factor productivity
three IV method, earnings equation 144–5
three-stage least squares (3SLS) method 138–40, 148, 150–1, 328
three-way error component model 53, 58–9, 210–11
time effect
 illustrative test example 74–6
 tests for 68–76, 200–3
 two-way error component regression 39
time-in-sample bias 218
time-invariant variables omission 153
time-series
 DID estimator 18
 nonstationary panels 275–6
 panel data limitations 10
 studies 7–8, 66
time-wise autocorrelation 115–19
Tobit models 257, 259–61, 263
total factor productivity (TFP) 301, 305–7
trade models 153–4
treatment group, DID estimator 17, 19–20
true state dependence 248–9
truncated panel data models 258–63
two-stage least squares (2SLS) method 129–32, 135–7, 140, 148, 152–3, 325–8
two-way error component regression model 39–61
 examples 50–3
 Hausman test 84–6
 problems 55–61
 SUR approach 124–5
 unbalanced panel data 197–200
two-way fixed effects model 39–41, 53, 55, 85–6
 two-way random effects model 42–7, 53, 56–8, 85–6
unbalanced nested error component model 203–8
unbalanced one-way error component model 187–93
unbalanced panel data 53
 empirical example 194–7
 models 187–211
 problems 209–11
unbalanced two-way error component model 197–200
unconditional likelihood, logit/probit models 240
under-specification, variance components 57
unemployment shifts, OECD countries 117–18
unequally spaced panels 100–3
union membership examples 252–3, 264–5, 272
index 373

unit root tests 310–11
 cross-sectional independence 277–86
 empirical examples 304–5
 first-generation 286
 spatial dependence 330–2
 United Nations macro panels 5
unobservable effects
count panel data 229
 logit/probit models 242
 one-way error component regression 13
 two-way error component regression 39
unrestricted residual sum of squares (URSS) 40–1, 67
unrestricted serial correlation 164
unrestricted SSE 68
untestable assumptions 258
URSS see unrestricted residual sum of squares
US surveys see Current Population Survey

VAR see vector autoregressions
variability benefits, panel data 7
variance components
 misspecification problems 57
 unbalanced panel data 209–10
 vector autoregressions (VAR) 179–80, 309
W2SLS see within-group 2SLS
wage equations see earnings equation
Wallace–Hussain estimator 27, 28, 39–40, 43–5, 51–2
Wansbeek–Kapetyn procedure 28–9, 53, 197–9
 see also Amemiya method
weak cross-section dependence, spatial panel data 337
weak instruments
 GMM estimator 167
 IV methods 174
 within-group 2SLS 148
weight matrix, GMM estimator 160
weighted least squares (WLS) 188
Westerlund test 311–12
Winklemann and Winklemann 242
within estimators
 efficiency testing 89–90
 Hausman and Taylor estimator 141–2
 one-way random effects model 22
 pooled models 221–2
 two-way error component model 51
within-group 2SLS (W2SLS) 148
WK procedure see Wansbeek–Kapetyn procedure
WLS see weighted least squares
Wooldridge's methods
 dynamic panel data 251–3, 262–3
 selection bias 256–8
World Bank 2–3, 4
zero-inflated Poisson (ZIP) 235
zero tolerance (ZT), DID estimator 20
zeros, excess, Poisson specification 235