Contents

- **Preface** xi
- **About the Authors** xiii
- **Acronyms and Symbols** xv

1 Offshore Wind Energy Systems

1.1 Background 1
1.2 Typical Subsystems 1
1.3 Wind Turbine Technology 4
 1.3.1 Basics 4
 1.3.2 Architectures 6
 1.3.3 Offshore Wind Turbine Technology Status 7
1.4 Offshore Transmission Networks 8
1.5 Impact on Power System Operation 9
 1.5.1 Power System Dynamics and Stability 10
 1.5.2 Reactive Power and Voltage Support 10
 1.5.3 Frequency Support 11
 1.5.4 Wind Turbine Inertial Response 11
1.6 Grid Code Regulations for the Connection of Wind Generation 12

2 DFIG Wind Turbine

2.1 Introduction 15
 2.1.1 Induction Generator (IG) 15
 2.1.2 Back-to-Back Converter 16
 2.1.3 Gearbox 16
 2.1.4 Crowbar Protection 16
 2.1.5 Turbine Transformer 17
2.2 DFIG Architecture and Mathematical Modelling 17
 2.2.1 IG in the abc Reference Frame 17
 2.2.2 IG in the dq0 Reference Frame 23
 2.2.3 Mechanical System 27
2.2.4 Crowbar Protection 29
2.2.5 Modelling of the DFIG B2B Power Converter 30
2.2.6 Average Modelling of Power Electronic Converters 33
2.2.7 The dc Circuit 35

2.3 Control of the DFIG WT 36
2.3.1 PI Control of Rotor Speed 36
2.3.2 PI Control of DFIG Reactive Power 39
2.3.3 PI Control of Rotor Currents 41
2.3.4 PI Control of dc Voltage 42
2.3.5 PI Control of Grid-side Converter Currents 45

2.4 DFIG Dynamic Performance Assessment 47
2.4.1 Three-phase Fault 47
2.4.2 Symmetrical Voltage Dips 51
2.4.3 Asymmetrical Faults 53
2.4.4 Single-Phase-to-Ground Fault 54
2.4.5 Phase-to-Phase Fault 55
2.4.6 Torque Behaviour under Symmetrical Faults 56
2.4.7 Torque Behaviour under Asymmetrical Faults 58
2.4.8 Effects of Faults in the Reactive Power Consumption of the IG 59

2.5 Fault Ride-Through Capabilities and Grid Code Compliance 60
2.5.1 Advantages and Disadvantages of the Crowbar Protection 60
2.5.2 Effects of DFIG Variables over Its Fault Ride-Through Capabilities 61

2.6 Enhanced Control Strategies to Improve DFIG Fault Ride-Through Capabilities 62
2.6.1 The Two Degrees of Freedom Internal Model Control (IMC) 62
2.6.2 IMC Controller of the Rotor Speed 65
2.6.3 IMC Controller of the Rotor Currents 66
2.6.4 IMC Controller of the dc Voltage 67
2.6.5 IMC Controller of the Grid-Side Converter Currents 69
2.6.6 DFIG IMC Controllers Tuning for Attaining Robust Control 70
2.6.7 The Robust Stability Theorem 70

References 72

3 Fully-Rated Converter Wind Turbine (FRC-WT) 73
3.1 Synchronous Machine Fundamentals 73
3.1.1 Synchronous Generator Construction 73
3.1.2 The Air-Gap Magnetic Field of the Synchronous Generator 74
3.2 Synchronous Generator Modelling in the dq Frame 79
3.2.1 Steady-State Operation 81
3.2.2 Synchronous Generator with Damper Windings 82
3.3 Control of Large Synchronous Generators 85
3.3.1 Excitation Control 86
3.3.2 Prime Mover Control 87
3.4 Fully-Rated Converter Wind Turbines 88
3.5 FRC-WT with Synchronous Generator 89
3.5.1 Permanent Magnets Synchronous Generator 90
3.5.2 FRC-WT Based on Permanent Magnet Synchronous Generator 92
3.5.3 Generator-Side Converter Control 93
3.5.4 Modelling of the dc Link 96
3.5.5 Network-Side Converter Control 98
3.6 FRC-WT with Squirrel-Cage Induction Generator 100
 3.6.1 Control of the FRC-IG Wind Turbine 100
3.7 FRC-WT Power System Damper 105
 3.7.1 Power System Oscillations Damping Controller 105
 3.7.2 Influence of Wind Generation on Network Damping 107
 3.7.3 Influence of FRC-WT Damping Controller on Network Damping 108
Acknowledgements 110
References 112

4 Offshore Wind Farm Electrical Systems 113
 4.1 Typical Components 113
 4.2 Wind Turbines for Offshore – General Aspects 113
 4.3 Electrical Collectors 115
 4.3.1 Wind Farm Clusters 118
 4.4 Offshore Transmission 118
 4.4.1 HVAC Transmission 118
 4.4.2 HVDC Transmission 120
 4.4.3 CSC-HVDC Transmission 122
 4.4.4 VSC-HVDC Transmission 128
 4.4.5 Multi-Terminal VSC-HVDC Networks 140
 4.5 Offshore Substations 141
 4.6 Reactive Power Compensation Equipment 144
 4.6.1 Static Var Compensator (SVC) 144
 4.6.2 Static Compensator (STATCOM) 147
 4.7 Subsea Cables 150
 4.7.1 Ac Subsea Cables 150
 4.7.2 Dc Subsea Cables 150
 4.7.3 Modelling of Underground and Subsea Cables 150
Acknowledgements 151
References 151

5 Grid Integration of Offshore Wind Farms – Case Studies 155
 5.1 Background 155
 5.2 Offshore Wind Farm Connection Using Point-to-Point
 VSC-HVDC Transmission 156
 5.3 Offshore Wind Farm Connection Using HVAC Transmission 159
 5.4 Offshore Wind Farm Connected Using Parallel HVAC/VSC-HVDC
 Transmission 161
5.5 Offshore Wind Farms Connected Using a Multi-Terminal VSC-HVDC Network

5.6 Multi-Terminal VSC-HVDC for Connection of Inter-Regional Power Systems

Acknowledgements

References

6 Offshore Wind Farm Protection

6.1 Protection within the Wind Farm ac Network

6.1.1 Wind Generator Protection Zone

6.1.2 Feeder Protection Zone

6.1.3 Busbar Protection Zone

6.1.4 High-Voltage Transformer Protection Zone

6.2 Study of Faults in the ac Transmission Line of an Offshore DFIG Wind Farm

6.2.1 Case Study 1

6.2.2 Case Study 2

6.3 Protections for dc Connected Offshore Wind Farms

6.3.1 VSC-HVDC Converter Protection Scheme

6.3.2 Analysis of dc Transmission Line Fault

6.3.3 Pole-to-Pole Faults

6.3.4 Pole-to-Earth Fault

6.3.5 HVDC dc Protections: Challenges and Trends

6.3.6 Simulation Studies of Faults in the dc Transmission Line of an Offshore DFIG Wind Farm

Acknowledgements

References

7 Emerging Technologies for Offshore Wind Integration

7.1 Wind Turbine Advanced Control for Load Mitigation

7.1.1 Blade Pitch Control

7.1.2 Blade Twist Control

7.1.3 Variable Diameter Rotor

7.1.4 Active Flow Control

7.2 Converter Interface Arrangements and Collector Design

7.2.1 Converters on Turbine

7.2.2 Converters on Platform

7.2.3 Ac Collection Options: Fixed or Variable Frequency

7.2.4 Evaluation of >Higher (>33 kV) Collection Voltage

7.3 Dc Transmission Protection

7.4 Energy Storage Systems (EESs)

7.4.1 Batteries

7.4.2 Super-Capacitors

7.4.3 Flywheel Storage System

7.4.4 Pumped-Hydro Storage

7.4.5 Compressed-Air Storage Systems

7.4.6 Superconducting Magnetic Energy Storage (SMES)