CONTENTS IN BRIEF

1 Basic Concepts and Formulas
2 Nonstationary Schrödinger Equation
3 Stationary Schrödinger Equation
4 Spectral Theory
5 High Energy Decay of Resolvent
6 Limiting Absorption Principle
7 Dispersion Decay
8 Scattering Theory and Spectral Resolution
9 Scattering Cross Section
10 Klein-Gordon Equation
11 Wave equation
CONTENTS

List of Figures xi
Foreword xiii
Preface xv
Acknowledgments xvii
Introduction xix

1 Basic Concepts and Formulas 1
 1 Distributions and Fourier transform 1
 2 Functional spaces 3
 2.1 Sobolev spaces 3
 2.2 Agmon-Sobolev weighted spaces 4
 2.3 Operator-valued functions 5
 3 Free propagator 6
 3.1 Fourier transform 6
 3.2 Gaussian integrals 8

2 Nonstationary Schrödinger Equation 11
 4 Definition of solution 11

vii
CONTENTS

28 Limiting amplitude principle 120
29 Spherical waves 121
30 Plane wave limit 125
31 Convergence of flux 127
32 Long range asymptotics 128
33 Cross section 131

10 Klein-Gordon Equation 133
34 Introduction 134
35 Free Klein-Gordon equation 137
35.1 Dispersion decay 137
35.2 Spectral properties 139
36 Perturbed Klein-Gordon equation 143
36.1 Spectral properties 143
36.2 Dispersion decay 145
37 Asymptotic completeness 149

11 Wave equation 151
38 Introduction 152
39 Free wave equation 154
39.1 Time decay 154
39.2 Spectral properties 155
40 Perturbed wave equation 158
40.1 Spectral properties 158
40.2 Dispersion decay 160
41 Asymptotic completeness 163
42 Appendix: Sobolev Embedding Theorem 165

References 167
Index 173