Index

A
ABS (asset-backed securities), 144–45
Analysis Toolpak Add-In, 117–18
asset-backed securities (ABS), 144–45
asset pools
collateralized debt obligations, 144–52
Monte Carlo simulation and, 129–30
price movements, 133–35
transition matrices, 152–56
value at risk, 135–44
assumptions, 2–3

B
barrier level, 99–100
binomial trees, 65–69
Black-Scholes option pricing method, 69, 85–91
black swan events, 176–77
Bloomberg CRAT, 105
bootstrapping, 115, 117
boundary conditions, 182–83
Box-Muller transformation, 24–25
Brownian motion, 34–40, 176

C
C++, 174
CDOs (collateralized debt obligations), 144–52
Cholesky decomposition, 58–62, 133–34, 141–42, 147, 149
collateralized debt obligations (CDOs), 144–52
correlated random numbers, 57–62
correlation
advanced concepts, 57–62
basics, 47–50
in a financial context, 50–56
CORREL function, 48–50, 58
COUNT function, 164
COUNTIF function, 15, 17, 20–21, 55, 122–23
COUPNUM function, 120
credit default swap (CDS) market, 111–13, 115, 117
credit events, 96
credit scoring, 109–11

D
data quality
dividends and splits, 159–62
garbage in, garbage out, 157–58
illiquid products, 162–71
lack of data, 171
default simulation
bootstrapping, 115–17
credit scoring, 110–11
government issuers, 126–27
Merton model, 95–109
Monte Carlo simulations and, 130
recovery assumptions, 123–26
reduced form models, 109–10, 114–15, 117–23
default simulation (*Continued*)
structured products, 144–52
using market information, 111–14
distributions, 14–17, 19–21, 176–77. *See also* normal
distributions
dividends, 159–62
drift, 105–7

E
econophysics, 177–78
efficient market hypothesis (EMH), 175–76
enter a formula, defined, 8
enter a label, defined, 7
enter a value, defined, 7
error
accumulating, 43–44
collateralized debt obligation calculations, 151–52
Hull-White tree model and, 92
statistical, 40–43
systematic, 43
value at risk model, 143
Excel 1997, 7
Excel 2003
vs. Excel 2007/2010, 6–7
initial settings, 9–10
Excel 2007/2010. *See also* Model Builder
initial settings, 9–11
Excel 2008, 7
Excel/Visual Basic Applications (VBA)
definition and overview, 5–6
Hull-White trinomial tree and, 85
N-sided die toss simulation, 27–34
pseudorandom number generation, 17–18
Extreme Value Theory (EVT), 177

F
Fama, Eugene, 175
forward induction, 79–85
function, defined, 8–9

G
garbage in, garbage out (GIGO), 157–58
Gaussian distribution. *See normal*
distributions
government credit analysis, 126–27

H
Halton sequence, 175
historical method of VaR, 139–40
Hull-White model
binomial trees and, 68–69
errors and, 92
forward induction, 79–85
trinomial trees and, 69–70, 73–79
Vasicek Model, 70–72
VBA and, 85

I
illiquid products, 162–71
initial settings, 9–11
iterations, 26–34

K
KMV (Moody’s), 105, 109
knock-out barriers, 99–100

L
liquidity, 126, 162–71
LOGINV function, 138
log-periodic power law (LPPL), 178
loss given default (LGD) analysis, 123, 125–26, 145
LPPL (log-periodic power law), 178
ludic fallacy, 177
Index

M
Macintosh users, 7
market data, 157–58
MATCH command, 120
matrix mathematics, 57–62
Merton Model
barrier and calibration, 99
Model Builder exercise, 100–107
option theory, 99–100
strengths and weaknesses, 108–9
theory, 95–99
volatility and, 107
MMULT function, 155
Model Builder, 50
Black-Scholes and volatility, 86–91
Box-Muller transformation, 25
Brownian motion, 35–36
correlation
advanced concepts, 57–62
basic calculations, 48–50
corporate default model, 51–56
Hull-White, 72–79, 82–85
illiquid securities, 162–71
initial settings, 9–11
Merton Model, 100–107
normal distributions, 19–24
N-sided die toss simulation, 27–34
price movement simulation, 131–35
pseudorandom number generation, 15, 17–19
splits and dividend payments, 160–62
transition matrices, 153–56
value at risk, 136–44
Monte Carlo simulation
quasi-Monte Carlo simulations, 175
Visual Basic for Applications and, 174
Monte Carlo simulations
collateralized debt obligations, 145–52
defaults and price movements, 130–35
iterations, 26
overview, 129–30
value at risk models and, 141–44
Moody’s KMV, 105, 109
MSCI, 107
multiple tenor bonds, 117–23
municipal debt, 127

N
name a cell or range of cells, defined, 7
Newton-Raphson method, 91, 187–88
normal distributions, 19–24, 40–42, 176–77
NORMSDIST function, 21–24
NORMSINV function, 21–24, 52–54, 132, 134, 141–42, 146, 148
N-sided die toss simulation, 27–34

O
OFFSET function, 58
option pricing
binomial trees, 65–69
Black-Scholes method, 85–91
forward induction, 79–85
Hull-White interest rate model, 69–73
Hull-White trinomial tree, 73–79, 92
option theory, 99–100
ordinary differential equations (ODE), 181–82
INDEX

P
pairwise deletion, 163–71
partial derivatives, 179–80
partial differential equation (PDE), 179–85
pool analysis. See asset pools
portfolios. See asset pools
price movements, 130–35, 176–77
programming language, 174–75
pseudorandom numbers
 Box-Muller transformation, 24–25
distributions, 14–17, 17–19
normal distributions, 19–24
seed variables and, 13–14
 in VBA, 18–19
put-call parity, 66–67
Python, 174

Q
quasi-Monte Carlo simulations, 175

R
RAND function, 15, 20–21
random elements, 13
random numbers. See pseudorandom numbers
random variables, 13–14. See also Brownian motion; Wiener process
random walk, 13. See also Wiener process
recovery assumptions, 123–26
collateralized debt obligations and, 144–52
risk management, 135–44

S
sampling, 26–34
scatter plots, 47–48
scenario modeling, 135
seed states, 14
seed variables, 13–14
share splits, 159–62
simulation
 characteristics of, 2–3
 defined, 1–2
 efficient market hypothesis and, 175–76
skewness, 41–42
Sornette, Didier, 178
sovereign debt, 126–27
special purpose vehicles (SPV), 144
splits, 159–62
SQRT function, 25, 50
statistical error, 40–43
stochastic differential equations, 183–85
stock dividends, 159–62
strategic defaults, 96
structural models
 commercial products, 105, 107, 109
 knock-out barrier and, 99–100
 Merton Model, 95–99
 strengths and weaknesses, 108–9
structured products, 144–52
SUM function, 154–55
systematic error, 43, 143

T
Taleb, Nassim, 176–77
technical defaults, 96
tranches, 144, 151
transition matrices, 144, 152–56
trinomial trees, 69–70, 73–79. See also forward induction

U
uncertainty, 43
<table>
<thead>
<tr>
<th>Index</th>
<th>193</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>Visual Basic Editor (VBE), 5</td>
</tr>
<tr>
<td>validity, 3</td>
<td>Visual Basic for Applications (VBA), 173–74</td>
</tr>
<tr>
<td>variance-covariance method, 139</td>
<td>W</td>
</tr>
<tr>
<td>Vasicek Model, 70–72</td>
<td>Wiener process, 34–40</td>
</tr>
<tr>
<td>VBA. See Excel/Visual Basic Applications</td>
<td></td>
</tr>
<tr>
<td>VBE. See Visual Basic Editor</td>
<td></td>
</tr>
</tbody>
</table>