INDEX

Accumulated plastic slip, 698
Accumulated plastic strain, 145, 179, 183, 184
Accuracy order, 211
Almansi strain tensor, 54
Alternating tensor, 24
Angle of internal friction, see Frictional angle
Angular velocity, 44
Arc-length method, 107
computer implementation of, 120
Armstrong–Frederick kinematic hardening
law, 188, 190, 448, 480
at finite strains, 635, 644
Array notation, see Matrix notation in finite
elements
Array of engineering strains, 93, 760
Array of stress components, 88, 759
Arrhenius law, 450
Assembly operator, see Finite element
assembly operator
Associative hardening, 183, 184, 243, 267, 296
for multisurface models, 183
Axial vector of a tensor, 25

B-matrix, see Discrete gradient operator,
symmetric
Back-stress tensor, 185, 257, 480
Green–Naghdi rate of, 634
Oldroyd rate of, 645
spatial, 634
Bauschinger effect, 185, 257, 420
bcc crystal, 692
Bending locking, 669
BFGS scheme, see Quasi-Newton methods,
BFGS scheme
Bingham viscoplastic model, 447
Biot strain tensor, 54
Blatz–Ko material, 530
Bodner–Partom viscoplastic model, 450
Body force, 61
reference, 68
Boundary traction, 68
reference, 68

Brittle damage, 472
Bulk modulus, 93

Calorodynamic process, 69
Cartesian components
of a tensor, 21
of a vector, 18
Cartesian coordinate frame, 18
Cartesian coordinates of a point, 18
Cauchy elastic material, 520
Cauchy stress tensor, 62
Cauchy stress vector, 61
Cauchy’s axiom, 61
Cauchy’s equation of motion, 68
Cauchy’s theorem, 62, 67
Cauchy–Green strain tensors, 50, 53
Chain rule, 36
Characteristic equation, 27
Characteristic space, 25
Clausius–Duhem inequality, 69, 149
Closest point projection algorithm, 200
Cohesion, 164
Compaction pressure, 405
Complementarity condition, 144, 147
discrete, 195
Configuration-dependent load, 106
Conservation of mass, 67, 499
Consistency condition, 147, 152
Consistent tangent matrix, 98
Consistent tangent modulus, see Consistent
tangent operator
Consistent tangent operator, 192, 199
for a hyperelastic-damage model, 567
for a single crystal model
implementation, 713
for elastoplasticity, 229
for finite strain multiplicative plasticity,
597, 601
with kinematic hardening, 642
for implicit return mappings, 238
capped Drucker–Prager model, 413
Drucker–Prager model, 337
Gurson model, 502
<table>
<thead>
<tr>
<th>Index Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoffman model</td>
<td>433</td>
</tr>
<tr>
<td>Lemaitre damage model</td>
<td>485</td>
</tr>
<tr>
<td>modified Cam-Clay model</td>
<td>408</td>
</tr>
<tr>
<td>Mohr–Coulomb model</td>
<td>316</td>
</tr>
<tr>
<td>simplified Lemaitre damage model</td>
<td>490</td>
</tr>
<tr>
<td>Tresca model</td>
<td>286</td>
</tr>
<tr>
<td>von Mises model</td>
<td>232, 242, 262, 382, 383</td>
</tr>
<tr>
<td>for the damaged elasticity model</td>
<td>510</td>
</tr>
<tr>
<td>for viscoplasticity, 458</td>
<td></td>
</tr>
<tr>
<td>Perzyna type model, 466</td>
<td></td>
</tr>
<tr>
<td>single crystal model implementation</td>
<td>725</td>
</tr>
<tr>
<td>von Mises-based model implementation</td>
<td>464</td>
</tr>
<tr>
<td>infinitesimal, 98, 754</td>
<td></td>
</tr>
<tr>
<td>material, 755</td>
<td></td>
</tr>
<tr>
<td>non-symmetry of, 409, 426</td>
<td></td>
</tr>
<tr>
<td>spatial, 104, 105, 756</td>
<td></td>
</tr>
<tr>
<td>symmetry property of, 243</td>
<td></td>
</tr>
<tr>
<td>Timoshenko elastoplastic beam, 401</td>
<td></td>
</tr>
<tr>
<td>Constitutive function, incremental</td>
<td></td>
</tr>
<tr>
<td>see Incremental constitutive function</td>
<td></td>
</tr>
<tr>
<td>Constitutive functional, 70, 71</td>
<td></td>
</tr>
<tr>
<td>Constitutive initial value problem</td>
<td>76</td>
</tr>
<tr>
<td>elastoplastic, 193</td>
<td></td>
</tr>
<tr>
<td>at finite strains, 590</td>
<td></td>
</tr>
<tr>
<td>plane stress, 359</td>
<td></td>
</tr>
<tr>
<td>incremental, see Incremental constitutive problem</td>
<td>127, 592</td>
</tr>
<tr>
<td>infinitesimal, 76</td>
<td></td>
</tr>
<tr>
<td>viscoplastic, 455</td>
<td></td>
</tr>
<tr>
<td>Continuum Damage Mechanics, 471, 473</td>
<td></td>
</tr>
<tr>
<td>Continuum elastoplastic tangent operator, 153, 235, 242, 243</td>
<td>624</td>
</tr>
<tr>
<td>for the Green–Naghdi rate-based model,</td>
<td></td>
</tr>
<tr>
<td>for the Jaumann rate-based model, 623</td>
<td></td>
</tr>
<tr>
<td>for the von Mises model, 234</td>
<td></td>
</tr>
<tr>
<td>symmetry of, 153, 244</td>
<td></td>
</tr>
<tr>
<td>Conved rate of stress, 621</td>
<td></td>
</tr>
<tr>
<td>Convergence criterion, finite element equilibrium solution, 98</td>
<td></td>
</tr>
<tr>
<td>Crack closure effects, 504, 510</td>
<td></td>
</tr>
<tr>
<td>Creep, 436, 439</td>
<td></td>
</tr>
<tr>
<td>tertiary, 436, 474</td>
<td></td>
</tr>
<tr>
<td>Creep-damage, 474</td>
<td></td>
</tr>
<tr>
<td>Critical state line, 404</td>
<td></td>
</tr>
<tr>
<td>Cross product, see Vector product</td>
<td></td>
</tr>
<tr>
<td>Crystallographic slip, 579, 692, 695</td>
<td></td>
</tr>
<tr>
<td>Cutting plane method, 205, 208, 213</td>
<td></td>
</tr>
<tr>
<td>Damage, 436, 472</td>
<td></td>
</tr>
<tr>
<td>Damage effective stress, 474, 478</td>
<td></td>
</tr>
<tr>
<td>Damage energy release rate, 479</td>
<td></td>
</tr>
<tr>
<td>Damage mechanics problems, see Numerical examples, damage mechanics</td>
<td></td>
</tr>
<tr>
<td>Damage models</td>
<td></td>
</tr>
<tr>
<td>anisotropic, 512</td>
<td></td>
</tr>
<tr>
<td>damaged elasticity law, 507</td>
<td></td>
</tr>
<tr>
<td>Gurson, 496</td>
<td></td>
</tr>
<tr>
<td>Gurtin–Francis, 560</td>
<td></td>
</tr>
<tr>
<td>hyperelasticity with damage, 557</td>
<td></td>
</tr>
<tr>
<td>Lemaitre, 478</td>
<td></td>
</tr>
<tr>
<td>simplified, 486</td>
<td></td>
</tr>
<tr>
<td>with crack closure, 511</td>
<td></td>
</tr>
<tr>
<td>Damage surface, 564</td>
<td></td>
</tr>
<tr>
<td>Damage tensor, 512</td>
<td></td>
</tr>
<tr>
<td>Damage threshold, 481, 490</td>
<td></td>
</tr>
<tr>
<td>Damage variable, 474–476</td>
<td></td>
</tr>
<tr>
<td>Deformation, 41</td>
<td></td>
</tr>
<tr>
<td>Deformation gradient, 46</td>
<td></td>
</tr>
<tr>
<td>determinant of, 48</td>
<td></td>
</tr>
<tr>
<td>elastoplastic multiplicative</td>
<td></td>
</tr>
<tr>
<td>decomposition of, 578</td>
<td></td>
</tr>
<tr>
<td>incremental, 127, 592</td>
<td></td>
</tr>
<tr>
<td>isochoric/volumetric split of, 49</td>
<td></td>
</tr>
<tr>
<td>polar decomposition of, 49</td>
<td></td>
</tr>
<tr>
<td>Determinant of a tensor, 23</td>
<td></td>
</tr>
<tr>
<td>Deviatoric plane (or π-plane), 160</td>
<td></td>
</tr>
<tr>
<td>Deviatoric projection tensor, 59</td>
<td></td>
</tr>
<tr>
<td>Deviatoric strain, see Strain deviator</td>
<td></td>
</tr>
<tr>
<td>Deviatoric stress, see Stress deviator</td>
<td></td>
</tr>
<tr>
<td>Differential-algebraic equations, 209</td>
<td></td>
</tr>
<tr>
<td>Differentiation, 32</td>
<td></td>
</tr>
<tr>
<td>Dilatancy, 175, 176</td>
<td></td>
</tr>
<tr>
<td>Dilatancy angle, 175–177, 185</td>
<td></td>
</tr>
<tr>
<td>Directional derivative, 32</td>
<td></td>
</tr>
<tr>
<td>Discrete gradient operator</td>
<td></td>
</tr>
<tr>
<td>spatial, 104</td>
<td></td>
</tr>
<tr>
<td>symmetric, 87</td>
<td></td>
</tr>
<tr>
<td>spatial, 103</td>
<td></td>
</tr>
<tr>
<td>Discretised virtual work equation, 88 linearised, 96</td>
<td></td>
</tr>
<tr>
<td>Dissipation function, 149, 452, 453</td>
<td></td>
</tr>
<tr>
<td>Dissipation potential, 74, 451, 453</td>
<td></td>
</tr>
<tr>
<td>Distortional elastic strain energy, 162</td>
<td></td>
</tr>
<tr>
<td>Divergence, 37</td>
<td></td>
</tr>
<tr>
<td>material, 46</td>
<td></td>
</tr>
<tr>
<td>spatial, 46</td>
<td></td>
</tr>
<tr>
<td>Divergence theorem, 37</td>
<td></td>
</tr>
<tr>
<td>Ductile damage, 472</td>
<td></td>
</tr>
<tr>
<td>Effective plastic strain, see Accumulated plastic strain</td>
<td></td>
</tr>
<tr>
<td>Eigenprojection, 26</td>
<td></td>
</tr>
<tr>
<td>Eigenvalue, 25</td>
<td></td>
</tr>
</tbody>
</table>
Eigenvector, 25
Elastic deformation gradient, 578
Elastic domain, 140, 143, 150
- for multisurface models, 156
Elastic predictor/return mapping algorithm, 196, 199
- for a Timoshenko beam model, 400
- for finite strain Green–Naghdi rate-based models, 632
- for finite strain Jaumann rate-based models, 631
- for finite strain multiplicative plasticity, 590
 - in plane stress, 602
 - with kinematic hardening, 637
- for finite strain single crystal plasticity, 699
 - planar double-slip model, 707
 - for the Barlat–Lian model, 431
 - for the capped Drucker–Prager model, 412
 - for the Drucker–Prager model, 324
 - plane stress, 363
 - for the Gurson model, 501
 - for the Hoffman model, 424
 - for the Lemaitre damage model, 482
 - for the modified Cam-Clay model, 406
 - for the Mohr–Coulomb model, 297
 - for the simplified Lemaitre damage model, 486
 - for the Tresca model, 268
 - for the von Mises model, 215, 221
 - in plane stress, 364, 373
 - with mixed hardening, 258
- for viscoplasticity, 456
 - at finite strains, 606
 - Perzyna-type model, 466
 - von Mises-based model, 460
Elastic rotation, 579
Elastic strain, 142, 148
 - logarithmic, 582
Elastic stretch, 579
Elastic trial hardening force, 196
Elastic trial state, 196, 424, 593
Elastic trial stress, 196
Elastic velocity gradient, 580
Elasticity
 - linear, see Linear elasticity
 - orthotropic, 423
 - plane stress, 358
Elasticity matrix, 93
Elasticity tensor
 - first, 755
 - infinitesimal, 93
 - spatial, 534, 756
Blatz–Ko model, 537
Hencky model, 537
Ogden model, 535
Elastoplastic tangent modulus, 147
Engineering strains, see Array of engineering strains
Enhanced assumed strain finite elements, 669
Equilibrium path, 107
Equivalent plastic strain, see Accumulated plastic strain
Error map, see Iso-error map
Essential boundary condition, 79
Euler method
 - backward, 194, 213, 455, 591
 - forward, 207
Eulerian strain, 54
Eulerian triad, 52
Exponential map integrator, 591, 700, 724, 751
Exponential of a tensor, see Tensor exponential function
External force vector, 88
Fatigue damage, 472
F-bar finite elements, 648
F-bar-Patch finite elements, 665
fcc crystal, 692
Filled rubbers, 473, 557
Finite element assembly operator, 89
Finite element equilibrium equation, see Discretised virtual work equation
Finite element mesh, 85
Finite step accuracy, 212, 213
First Piola–Kirchhoff stress, 65
First principle of thermodynamics, 68
Flow potential, 151
 - non-smooth, 155
Flow rule, 150
 - associative, 152
 - associative Barlat–Lian, 430
 - associative Hill, 420
 - associative Hoffman, 422
 - associative Tresca, 171, 267
 - based on Drucker–Prager function, 175
 - based on modified Cam-Clay function, 405
 - based on Mohr–Coulomb function, 173
derived from a flow potential, 151
finite strain multiplicative plasticity, 584
for associative multisurface models, 157
for single crystals, 695
for the capped Drucker–Prager model, 410
for the Gurson model, 498
Prandtl–Reuss, 171
uniaxial, 144
viscoplastic, 450
one-dimensional, 438

Flow vector, 150
derived from a flow potential, 151
derived from a non-smooth flow potential, 155

Fourth-order tensor, 29

Frame invariance, see Material objectivity

Free-energy, 69
for an elastoplastic material, 148
for finite strain hyperelasticity, 520
for the Lemaitre damage model, 478
isotropic, 521

Frictional angle, 164, 175, 185

G-matrix, see Discrete gradient operator, spatial

Gaussian quadrature, 89

Geometric stiffness, see Stiffness matrix, geometric

Gradient of a field, 32

Green–Lagrange strain tensor, 53
Green–Naghdi rate of stress, 621

Gurson porous plasticity model, see Damage models, Gurson

Gurtin–Francis damage model, see Damage models, Gurtin–Francis

Hardening, 140
Hardening curve, 145, 179, 181

Hardening modulus, 147
generalised, 150
linear isotropic, 182
linear kinematic, 186

Hardening slope, see hardening modulus

Hardening, derived from a flow potential, 151
Hardening, derived from a non-smooth flow potential, 155

Hardening, general model, 150

Hardening, uniaxial model, 145

Heaviside step function, 221

Helmholtz free-energy, see Free-energy

Hencky material, 528
in plane stress, 532

Hencky strain tensor, see Logarithmic strain tensor

Homogeneous deformation, 47

hpc crystal, 692

Hu–Washizu variational principle, 669
Hughes–Winget algorithm, 631

Hydrostatic stress, 64

Hyperelasticity, 520
compressible regularisation, 525

in plane stress, see Plane stress hyperelasticity
incompressible, 524
isotropic, 521

Hyperelasticity problems, see Numerical examples, finite hyperelasticity

Hyperelasticity with damage, see Damage models, hyperelasticity with damage

HYPLAS program
data input and initialisation, 117
elements, implementation and management, 128–131
global database, 117
increment cutting, 123
load incrementation, 120
main program, 117
material models, implementation and management, 131–135

HYPLAS subprograms:
ARCLEN, 109, 120, 122–124
CONVER, 100, 109
CSTEP2, 601
CSTODG, 542, 545, 546
CSTPDS, 713
CTDAMA, 486, 491
CTDMEL, 510
CTDP, 324, 337, 340, 342, 343
CTDPPN, 366
CTMC, 295, 315, 318, 319, 324, 342
CTOQG, 134, 538
CCTR, 266, 283, 291, 294, 295, 324, 599
CTVM, 134, 235, 364–366, 383, 569, 599
CTVMMX, 257, 263
CTVMPH, 383, 384
DEXMP, 702
DGISO2, 287, 289, 291, 295, 317, 731, 737, 738
DISO2, 537, 599, 731
DPLFUN, 228, 238
ELEIIF, 125, 126, 128, 129, 131
ELEIST, 100, 109, 129, 131
ERRPRT, 119, 227
FRONT, 100, 109, 120, 123, 124, 129
IFFB2, 538
IFFBA2, 129, 656
IFSTD2, 100, 128, 129, 538, 656
INCREM, 120
INDATA, 118, 119, 129
ININCR, 118
INITIA, 119, 120
INLOAD, 118, 119, 129
INTFOR, 100, 109, 124, 126
ISO2, 731
LENGTH, 121
Incremental constitutive function, 95, 102, 127, 133, 192, 229, 598
for elastoplasticity, 230
for the viscoplastic von Mises-based model, 464
for the von Mises model, 220, 223, 233, 260
Incremental constitutive problem
of finite strain multiplicative plasticity, 592
of infinitesimal elastoplasticity, 194
Incremental displacement vector, 98
Incremental finite element equilibrium equations
at finite strains, 103
infinitesimal, 96
Incremental objectivity, 625
Incremental plastic multiplier, 195
Incremental potential, 243
Indicator function, 452
Infinitesimal deformation, 57
Infinitesimal strain tensor, 57
Initial boundary value problem, 79
infinitesimal, 81
material, 80
spatial, 79
Initial stiffness method, 99
Initial yield stress, 182
Inner product of tensors, 22
Inner product of vectors, 17
Intermediate configuration, see Plastic intermediate configuration
Internal force vector, 88, 192
Internal variables, 72
Interpolation function, see Shape function
Interpolation matrix, 87
Invertible tensor, 23
Iso-error map, 214, 215
implicit Drucker–Prager model implementation, 337
implicit Lemaitre model implementation, 483
implicit Mohr–Coulomb model implementation, 315
implicit Tresca model implementation, 283
viscoplastic von Mises-based model implementation, 463
Isochoric deformation, 48
Isoparametric finite element, 90
Isotropic hardening, 178, 448
Isotropic scalar function, 731
Isotropic solid, 71
Isotropic tensor, 30
Isotropic tensor function, 287, 316, 733

Identity tensor
of fourth-order, 31
symmetric, 31
of second order, 19
Incremental boundary value problem
at finite strains, 103
infinitesimal, 95
J-integral, 479
J_2, J_3-invariants, see Stress deviator, invariants of
Jaumann rate of stress, 619
Kinematic hardening, 185, 257, 448
at finite strains, 633
Kinematically admissible displacements set, 79
discretised, 86
Kirchhoff stress, 67
Kuhn–Tucker optimality conditions, 170
Lagrangian strain, 53
Lagrangian triad, 52
LATIN Method, 101
LBB condition, 687
Left Cauchy–Green strain tensor, see
Cauchy–Green strain tensors
Left stretch tensor, see Stretch tensors
Lemaitre–Chaboche viscoplasticity model, 449
Lie derivative, 585
Limit load, see Plastic collapse problems
Line-search, 200, 431, 433, 489, 490, 501, 720
Linear elasticity, 93
Linear hardening, 182, 223, 244, 261
Linearisation, 38
in infinite-dimensional functional spaces, 39
Linearised finite element equilibrium equation, see Discretised virtual work equation, linearised
Load factor, 96
Load-stiffness matrix, see Stiffness matrix, load stiffness
Loading/unloading conditions, 145, 150
for multisurface models, 157
Lode angle, 161
Logarithmic strain tensor, 54, 528, 582
Macauley bracket, 505
Master damage curve, 560, 564
Material description, 44
Material field, 44
Material gradient, 46
Material objectivity, 70, 520, 619
Material stiffness, see Stiffness matrix, material
Material symmetry, 71, 521
Material tangent modulus, see Consistent tangent operator, material
Material time derivative, 46
Mathematical programming, 210
Matrix notation in finite elements, 87, 759
Matrix representation of a tensor, 21
Maximum plastic dissipation, principle of, 170, 453
at large strains, 589
Midpoint method, 203, 213, 458, 752
Mixed hardening, 189, 257
Modified Newton methods, 99
Mohr circle, 164
Momentum balance, 67
Mooney–Rivlin material, 525
Motion, 42
Mullins effect, 557
Multiplicative decomposition of the deformation gradient, 578
Multivector return mapping, see Return mapping, multivector
Natural boundary condition, 79
neo-Hookean material, 525
Newton–Raphson Method, 96, 97, 198
with combined line-search, see
Line-search
with improved initial guess, 200, 484
Nodal displacements vector, 87
Nominal stress, see Stress, first
Piola–Kirchhoff
Nonlinear hardening, 182
Norm of a tensor, 22
Norm of a vector, 17
Normal dissipativity, 74, 451
Norton creep law, 449, 474, 723
Numerical examples
damage mechanics
damageable rubber balloon, 569
fracturing of a cylindrical notched specimen, 493
finite strain hyperelasticity
annular plate, 547
Cook’s membrane, 656
elastomeric bead compression, 556
flat membranes inflation, 552
perforated rubber sheet, 547
rubber cylinder compression, 555
rugby ball, 551
spherical rubber balloon, 550
finite strain plasticity
bending of a V-notched Tresca bar, 606
double-notched specimen, 658
necking of a cylindrical bar, 607
perforated plate, 613
plane strain localisation, 611
thin sheet forming, 614
unconstrained single element, 660
upsetting of a cylindrical billet, 661
finite strain single crystal plasticity
 crystal shearing, 710
 symmetric rectangular strip, 717
 unsymmetric rectangular strip, 720
 infinitesimal plasticity
 circular plate, 250
circular-footing, 350
 concrete shear wall, 391
double-notched specimen, 255
 end-loaded cantilever, 387
 perforated plate, 390, 469
 plate with circular hole, 387
 pressurised cylinder, 244
 pressurised spherical shell, 247
 slope stability, 351
 strip footing, 252, 346
 tapered cantilever, 344
 V-notched bar, 343
 viscoplastity
 creep of a single crystal, 726
 notched specimen, 467
 perforated plate, 469

Objective rate, 74
Objective stress rates, 619
Observer change, 70
Ogden material, 527
 in plane stress, 531
Oldroyd rate of stress, 620
Operator split method, 201
Orthogonal tensor, 23
Orthonormal basis, 18
Out-of-balance force vector, see Residual vector
Perfect plasticity, see Plasticity models, perfectly plastic
Perić viscoplastic model, 438, 724
Permanent strain, see Plastic strain
Perzyna viscoplastic model, 448, 724
Piola–Kirchhoff stress, see First Piola–Kirchhoff stress
Plane stress assumption, 357
Plane stress elasticity, see Elasticity, plane stress
Plane stress enforcement
 in finite hyperelasticity, 530
 in finite strain plasticity, 604
 in linear elasticity, 359
 in plasticity, 360, 361, 367
Plane stress hyperelasticity, 530
Plastic anisotropy, 414
Plastic collapse problems, 244, 247, 250, 252, 255, 343, 344, 346, 350, 351, 387, 390, 391
Plastic deformation gradient, 578
Plastic dilatancy, see Dilatancy
Plastic dissipation, 149, 451
Plastic flow, 140
Plastic flow rule, see Flow rule
Plastic intermediate configuration, 575
Plastic multiplier, 144
determination of, 146, 152, 577
Plastic rotation, 579
Plastic spin, 581
Plastic strain, 143, 148
 volumetric, 175, 176, 405, 412, 422, 588
Plastic stretch, 575, 579
Plastic stretching, 581
 spatial, 582
Plastic velocity gradient, 580
Plastic work, 181
Plastic yielding, see Plastic flow
Plastically admissible stresses, 143
 set of, 150, 583
Plasticity models (general):
 associative, 152
 finite strains
general hyperelastic-based
 multiplicativ, 578
hypoelastic-based, 615
in plane stress, 601
Jaumann rate-based, 622
one-dimensional, 575
single crystal, 694
multisurface, 156
one-dimensional, 141–147
perfectly plastic, 177
plane stress-projected, 360, 370, 601
three-dimensional, 148–157
Timoshenko beam, 399
Polar decomposition, 28
Polycrystalline metal, 414, 472
Position vector, 18
Positive definite tensor, 23
Prager kinematic hardening law, 186, 448
 at finite strains, 635, 645
Prandtl–Reuss flow rule, see Flow rule, Prandtl–Reuss
Principal axis, 26
Principal direction, see Principal axis
Principal invariants, 27
Principal stresses, 63, 67
Principal stretches, 52
Principal value, see Eigenvalue
Product rule, 37
Proper orthogonal tensor, 23
Proportional loading, 96
Quasi-Newton methods, 101
BFGS scheme, 101

Rate of deformation tensor, see Stretching tensor
Rate-dependence, 435, 436, 441
Reference map, 43
Relative effective stress, 448
Relative strain, 560, 563
Relative stress tensor, 185, 257
Relative yield stress, 415, 421
Relaxation, see Stress relaxation
Relaxation test, 436
Residual vector, 97
Resultant forces, 397
Return mapping, 196
closed form, 223, 261, 300, 327
in principal stress space, 269, 298, 599
multivector, 270, 298, 700, 707
viscoplastic, 456
Right Cauchy–Green strain tensor, see
Cauchy–Green strain tensors
Right stretch tensor, see Stretch tensors
Rigid deformation, 42
infinitesimal, 58
Rigid motion, 44
Rigid velocity, 44
Rotated plastic stretching, see Plastic stretching, spatial
Rotation tensor, 23

Schmid resolved shear stress, 693
Second Piola–Kirchhoff stress, 66
Second principle of thermodynamics, 68
Second-order tensor, 19
Shape function, 85
global, 85
Shear modulus, 93
Shear yield stress, 157
Skew symmetric tensor, 19
Slip system, 692
Slope stability, see Numerical examples, infinitesimal plasticity, slope stability
Snap-back, 107
Snap-through, 107
Spatial description, 44
Spatial elasticity tensor, see Elasticity tensor, spatial
Spatial field, 44
Spatial gradient, 46
Spatial tangent modulus, see Consistent tangent operator, spatial
Spatial time derivative, 46
Spectral decomposition, 25
Spectral theorem, 26
Spin tensor, 55
Stability, 212
State update interface, 127
State update procedure, 123–126, 128, 132, 133, 135, 192
State variables, 72
Static condensation, 676, 687
Stiffness matrix, 97, 192
for finite strains, 104
for infinitesimal strains, 98
for linear elasticity, 94
geometric, 106
load-stiffness, 106
material, 106
Strain deviator, 58, 529, 582
Strain equivalence, hypothesis of, 475, 478, 479
Strain hardening, 178
Strain-displacement matrix, see Discrete gradient operator, symmetric
Strain-rate dependence, see Rate-dependence
Stress deviator, 64
invariants of, 160–161
Strain equivalence, hypothesis of, 476
Stress power, 68
Stress relaxation, 436, 444
Stretch tensors, 49
Stretching tensor, 55
Subdifferential, 154, 453
Subgradient, 154
Symmetric gradient, 57
Symmetric tensor, 19
Symmetry group, 71

Tangent modulus, see Consistent tangent operator
Tangent stiffness, see Stiffness matrix
Tangential solution, 110
Taylor hardening law, 698
Tensile/compressive split of the stress, 505
Tensor exponential function, 747
derivative of, 750
Tensor inverse, 23
Tensor product, 20, 28, 29
Tensor square root, 28
Tensors of higher order, 28
Tertiary creep, see Creep, tertiary
Texturing, 414
Thermodynamic determinism, 70
Thermodynamical force, 73, 149
Thermodynamics with internal variables, 71
Thermokinetic process, 69
Timoshenko beam, 396
Trace of a tensor, 22
INDEX

<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Transpose</td>
<td>19</td>
</tr>
<tr>
<td>Trapezoidal method</td>
<td>202, 458</td>
</tr>
<tr>
<td>Triaxial shear test</td>
<td>141</td>
</tr>
<tr>
<td>Truesdell shear rate of stress</td>
<td>620</td>
</tr>
<tr>
<td>Uniaxial tension test</td>
<td>140, 436</td>
</tr>
<tr>
<td>Uniaxial yield stress</td>
<td>140, 143</td>
</tr>
<tr>
<td>Unit vector</td>
<td>17</td>
</tr>
<tr>
<td>Unstable equilibrium</td>
<td>107</td>
</tr>
<tr>
<td>u/p finite elements</td>
<td>683</td>
</tr>
<tr>
<td>Vector product</td>
<td>24</td>
</tr>
<tr>
<td>Velocity</td>
<td>43</td>
</tr>
<tr>
<td>Velocity gradient</td>
<td>55</td>
</tr>
<tr>
<td>Virtual displacements space</td>
<td>77, 78, 80, 81</td>
</tr>
<tr>
<td>Virtual work linearisation</td>
<td>86</td>
</tr>
<tr>
<td>Virtual work linearisation (under finite deformations)</td>
<td>755</td>
</tr>
<tr>
<td>Virtual work linearisation (under infinitesimal deformations)</td>
<td>753</td>
</tr>
<tr>
<td>Virtual work principle</td>
<td>77</td>
</tr>
<tr>
<td>Virtual work principle (discretised)</td>
<td>77</td>
</tr>
<tr>
<td>Virtual work principle (infinitesimal)</td>
<td>78</td>
</tr>
<tr>
<td>Virtual work principle (material)</td>
<td>78</td>
</tr>
<tr>
<td>Virtual work principle (spatial)</td>
<td>77</td>
</tr>
<tr>
<td>Viscoplastic flow rule</td>
<td>160</td>
</tr>
<tr>
<td>Viscoplastic flow rule (see Flow rule, viscoplastic)</td>
<td></td>
</tr>
<tr>
<td>Viscoplastic integration algorithm</td>
<td>454</td>
</tr>
<tr>
<td>Viscoplastic integration algorithm (general implicit)</td>
<td>454</td>
</tr>
<tr>
<td>Viscoplastic integration algorithm (midpoint)</td>
<td>458</td>
</tr>
<tr>
<td>Viscoplastic integration algorithm (models with a yield surface, Elastic predictor/return mapping algorithm, for viscoplasticity trapezoidal)</td>
<td>458</td>
</tr>
<tr>
<td>Viscoplastic return mapping</td>
<td>458</td>
</tr>
<tr>
<td>Viscoplastic return mapping (see Return mapping, viscoplastic)</td>
<td></td>
</tr>
<tr>
<td>Viscoplasticity models (general):</td>
<td></td>
</tr>
<tr>
<td>Viscoplasticity models (general): at finite strains</td>
<td>605</td>
</tr>
<tr>
<td>Viscoplasticity models (general): multidimensional general</td>
<td>450</td>
</tr>
<tr>
<td>Viscoplasticity models (general): multidimensional von Mises-based</td>
<td>445</td>
</tr>
<tr>
<td>Viscoplasticity models (general): one-dimensional</td>
<td>437</td>
</tr>
<tr>
<td>Viscoplasticity models (general): single crystal</td>
<td>721</td>
</tr>
<tr>
<td>Viscoplasticity models (general): without a yield surface</td>
<td>448</td>
</tr>
<tr>
<td>Viscoplasticity problems, see Numerical examples, viscoplasticity</td>
<td></td>
</tr>
<tr>
<td>Void volume fraction</td>
<td>496</td>
</tr>
<tr>
<td>Volume change ratio</td>
<td>48</td>
</tr>
<tr>
<td>Volumetric deformation</td>
<td>49</td>
</tr>
<tr>
<td>Volumetric elastic strain energy</td>
<td>162</td>
</tr>
<tr>
<td>Volumetric locking</td>
<td>647</td>
</tr>
<tr>
<td>Volumetric plastic strain (see Plastic strain, volumetric)</td>
<td></td>
</tr>
<tr>
<td>Volumetric strain</td>
<td>59, 529, 582</td>
</tr>
<tr>
<td>von Mises effective (or equivalent) stress</td>
<td>163</td>
</tr>
<tr>
<td>Work hardening</td>
<td>180</td>
</tr>
<tr>
<td>Yield criterion</td>
<td>143</td>
</tr>
<tr>
<td>Yield criterion (Drucker–Prager)</td>
<td>166</td>
</tr>
<tr>
<td>Yield criterion (isotropic)</td>
<td>158</td>
</tr>
<tr>
<td>Yield criterion (Mohr–Coulomb)</td>
<td>164</td>
</tr>
<tr>
<td>Yield criterion (multisurface representation)</td>
<td>165</td>
</tr>
<tr>
<td>Yield criterion (pressure-insensitive)</td>
<td>158</td>
</tr>
<tr>
<td>Yield criterion (Tresca)</td>
<td>157</td>
</tr>
<tr>
<td>Yield criterion (multisurface representation)</td>
<td>160</td>
</tr>
<tr>
<td>Yield criterion (under finite strains)</td>
<td>583</td>
</tr>
<tr>
<td>Yield criterion (von Mises)</td>
<td>162</td>
</tr>
<tr>
<td>Yield function</td>
<td>143</td>
</tr>
<tr>
<td>Yield function (Drucker–Prager)</td>
<td>166</td>
</tr>
<tr>
<td>Yield function (isotropic)</td>
<td>158</td>
</tr>
<tr>
<td>Yield function (Mohr–Coulomb)</td>
<td>164</td>
</tr>
<tr>
<td>Yield function (multisurface representation)</td>
<td>166</td>
</tr>
<tr>
<td>Yield function (pressure-insensitive)</td>
<td>158</td>
</tr>
<tr>
<td>Yield function (Tresca)</td>
<td>157</td>
</tr>
<tr>
<td>Yield function (multisurface representation)</td>
<td>160</td>
</tr>
<tr>
<td>Yield function (von Mises)</td>
<td>162</td>
</tr>
<tr>
<td>Yield pressure</td>
<td>496</td>
</tr>
<tr>
<td>Yield pressure (Compaction pressure)</td>
<td></td>
</tr>
<tr>
<td>Yield surface</td>
<td>150</td>
</tr>
<tr>
<td>Yield surface (graphical representation of)</td>
<td>159, 416, 697</td>
</tr>
<tr>
<td>Zero tensor</td>
<td>19</td>
</tr>
<tr>
<td>Zero vector</td>
<td>17</td>
</tr>
</tbody>
</table>