CONTENTS

Preface

Part One Basic concepts

1 Introduction

1.1 Aims and scope .. 3
1.1.1 Readership ... 4
1.2 Layout .. 4
1.2.1 The use of boxes .. 7
1.3 General scheme of notation 7
1.3.1 Character fonts. General convention....................... 8
1.3.2 Some important characters 9
1.3.3 Indicial notation, subscripts and superscripts 13
1.3.4 Other important symbols and operations 14

2 Elements of tensor analysis

2.1 Vectors .. 17
2.1.1 Inner product, norm and orthogonality 17
2.1.2 Orthogonal bases and Cartesian coordinate frames 18
2.2 Second-order tensors .. 19
2.2.1 The transpose. Symmetric and skew tensors 19
2.2.2 Tensor products .. 20
2.2.3 Cartesian components and matrix representation 21
2.2.4 Trace, inner product and Euclidean norm 22
2.2.5 Inverse tensor. Determinant 23
2.2.6 Orthogonal tensors. Rotations 23
2.2.7 Cross product .. 24
2.2.8 Spectral decomposition 25
2.2.9 Polar decomposition 28
2.3 Higher-order tensors ... 28
2.3.1 Fourth-order tensors 29
2.3.2 Generic-order tensors 30
2.4 Isotropic tensors .. 30
2.4.1 Isotropic second-order tensors 30
2.4.2 Isotropic fourth-order tensors 30
2.5 Differentiation 32
2.5.1 The derivative map. Directional derivative . 32
2.5.2 Linearisation of a nonlinear function 32
2.5.3 The gradient 32
2.5.4 Derivatives of functions of vector and tensor arguments . 33
2.5.5 The chain rule 36
2.5.6 The product rule 37
2.5.7 The divergence 37
2.5.8 Useful relations involving the gradient and the divergence ... 38
2.6 Linearisation of nonlinear problems 38
2.6.1 The nonlinear problem and its linearised form . 38
2.6.2 Linearisation in infinite-dimensional functional spaces . 39

3 Elements of continuum mechanics and thermodynamics 41
3.1 Kinematics of deformation 41
3.1.1 Material and spatial fields 44
3.1.2 Material and spatial gradients, divergences and time derivatives . 46
3.1.3 The deformation gradient 46
3.1.4 Volume changes. The determinant of the deformation gradient . 47
3.1.5 Isochoric/volumetric split of the deformation gradient 49
3.1.6 Polar decomposition. Stretches and rotation 49
3.1.7 Strain measures 52
3.1.8 The velocity gradient. Rate of deformation and spin 55
3.1.9 Rate of volume change 56
3.2 Infinitesimal deformations 57
3.2.1 The infinitesimal strain tensor 57
3.2.2 Infinitesimal rigid deformations 58
3.2.3 Infinitesimal isochoric and volumetric deformations 58
3.3 Forces. Stress Measures 60
3.3.1 Cauchy’s axiom. The Cauchy stress vector 61
3.3.2 The axiom of momentum balance 61
3.3.3 The Cauchy stress tensor 62
3.3.4 The First Piola–Kirchhoff stress 64
3.3.5 The Second Piola–Kirchhoff stress 66
3.3.6 The Kirchhoff stress 67
3.4 Fundamental laws of thermodynamics 67
3.4.1 Conservation of mass 67
3.4.2 Momentum balance 67
3.4.3 The first principle 68
3.4.4 The second principle 68
3.4.5 The Clausius–Duhem inequality 69
3.5 Constitutive theory 69
3.5.1 Constitutive axioms 69
3.5.2 Thermodynamics with internal variables 71
3.5.3 Phenomenological and micromechanical approaches 74
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.3.3</td>
<td>External loading. Subroutine INLOAD</td>
<td>119</td>
</tr>
<tr>
<td>5.3.4</td>
<td>Initialisation of variable data. Subroutine INITIA</td>
<td>120</td>
</tr>
<tr>
<td>5.4</td>
<td>The load incrementation loop. Overview</td>
<td>120</td>
</tr>
<tr>
<td>5.4.1</td>
<td>Fixed increments option</td>
<td>120</td>
</tr>
<tr>
<td>5.4.2</td>
<td>Arc-length control option</td>
<td>120</td>
</tr>
<tr>
<td>5.4.3</td>
<td>Automatic increment cutting</td>
<td>123</td>
</tr>
<tr>
<td>5.4.4</td>
<td>The linear solver. Subroutine FRONT</td>
<td>124</td>
</tr>
<tr>
<td>5.4.5</td>
<td>Internal force calculation. Subroutine INTFOR</td>
<td>124</td>
</tr>
<tr>
<td>5.4.6</td>
<td>Switching data. Subroutine SWITCH</td>
<td>124</td>
</tr>
<tr>
<td>5.4.7</td>
<td>Output of converged results. Subroutines OUTPUT and RSTART</td>
<td>125</td>
</tr>
<tr>
<td>5.5</td>
<td>Material and element modularity</td>
<td>125</td>
</tr>
<tr>
<td>5.5.1</td>
<td>Example. Modularisation of internal force computation</td>
<td>125</td>
</tr>
<tr>
<td>5.6</td>
<td>Elements. Implementation and management</td>
<td>128</td>
</tr>
<tr>
<td>5.6.1</td>
<td>Element properties. Element routines for data input</td>
<td>128</td>
</tr>
<tr>
<td>5.6.2</td>
<td>Element interfaces. Internal force and stiffness computation</td>
<td>129</td>
</tr>
<tr>
<td>5.6.3</td>
<td>Implementing a new finite element</td>
<td>129</td>
</tr>
<tr>
<td>5.7</td>
<td>Material models: implementation and management</td>
<td>131</td>
</tr>
<tr>
<td>5.7.1</td>
<td>Material properties. Material-specific data input</td>
<td>131</td>
</tr>
<tr>
<td>5.7.2</td>
<td>State variables and other Gauss point quantities.</td>
<td>132</td>
</tr>
<tr>
<td>5.7.3</td>
<td>Material-specific switching/initialising routines</td>
<td>133</td>
</tr>
<tr>
<td>5.7.4</td>
<td>Material-specific tangent computation routines</td>
<td>134</td>
</tr>
<tr>
<td>5.7.5</td>
<td>Material-specific results output routines</td>
<td>134</td>
</tr>
<tr>
<td>5.7.6</td>
<td>Implementing a new material model</td>
<td>135</td>
</tr>
</tbody>
</table>

Part Two Small strains

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>The mathematical theory of plasticity</td>
<td>139</td>
</tr>
<tr>
<td>6.1</td>
<td>Phenomenological aspects</td>
<td>140</td>
</tr>
<tr>
<td>6.2</td>
<td>One-dimensional constitutive model</td>
<td>141</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Elastoplastic decomposition of the axial strain</td>
<td>142</td>
</tr>
<tr>
<td>6.2.2</td>
<td>The elastic uniaxial constitutive law</td>
<td>143</td>
</tr>
<tr>
<td>6.2.3</td>
<td>The yield function and the yield criterion</td>
<td>143</td>
</tr>
<tr>
<td>6.2.4</td>
<td>The plastic flow rule. Loading/unloading conditions</td>
<td>144</td>
</tr>
<tr>
<td>6.2.5</td>
<td>The hardening law</td>
<td>145</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Summary of the model</td>
<td>145</td>
</tr>
<tr>
<td>6.2.7</td>
<td>Determination of the plastic multiplier</td>
<td>146</td>
</tr>
<tr>
<td>6.2.8</td>
<td>The elastoplastic tangent modulus</td>
<td>147</td>
</tr>
<tr>
<td>6.3</td>
<td>General elastoplastic constitutive model</td>
<td>148</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Additive decomposition of the strain tensor</td>
<td>148</td>
</tr>
<tr>
<td>6.3.2</td>
<td>The free energy potential and the elastic law</td>
<td>148</td>
</tr>
<tr>
<td>6.3.3</td>
<td>The yield criterion and the yield surface</td>
<td>150</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Plastic flow rule and hardening law</td>
<td>150</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Flow rules derived from a flow potential</td>
<td>151</td>
</tr>
<tr>
<td>6.3.6</td>
<td>The plastic multiplier</td>
<td>152</td>
</tr>
</tbody>
</table>

Part Two Small strains

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>The mathematical theory of plasticity</td>
<td>139</td>
</tr>
<tr>
<td>6.1</td>
<td>Phenomenological aspects</td>
<td>140</td>
</tr>
<tr>
<td>6.2</td>
<td>One-dimensional constitutive model</td>
<td>141</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Elastoplastic decomposition of the axial strain</td>
<td>142</td>
</tr>
<tr>
<td>6.2.2</td>
<td>The elastic uniaxial constitutive law</td>
<td>143</td>
</tr>
<tr>
<td>6.2.3</td>
<td>The yield function and the yield criterion</td>
<td>143</td>
</tr>
<tr>
<td>6.2.4</td>
<td>The plastic flow rule. Loading/unloading conditions</td>
<td>144</td>
</tr>
<tr>
<td>6.2.5</td>
<td>The hardening law</td>
<td>145</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Summary of the model</td>
<td>145</td>
</tr>
<tr>
<td>6.2.7</td>
<td>Determination of the plastic multiplier</td>
<td>146</td>
</tr>
<tr>
<td>6.2.8</td>
<td>The elastoplastic tangent modulus</td>
<td>147</td>
</tr>
<tr>
<td>6.3</td>
<td>General elastoplastic constitutive model</td>
<td>148</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Additive decomposition of the strain tensor</td>
<td>148</td>
</tr>
<tr>
<td>6.3.2</td>
<td>The free energy potential and the elastic law</td>
<td>148</td>
</tr>
<tr>
<td>6.3.3</td>
<td>The yield criterion and the yield surface</td>
<td>150</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Plastic flow rule and hardening law</td>
<td>150</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Flow rules derived from a flow potential</td>
<td>151</td>
</tr>
<tr>
<td>6.3.6</td>
<td>The plastic multiplier</td>
<td>152</td>
</tr>
</tbody>
</table>

Part Two Small strains

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
<td>The mathematical theory of plasticity</td>
<td>139</td>
</tr>
<tr>
<td>6.1</td>
<td>Phenomenological aspects</td>
<td>140</td>
</tr>
<tr>
<td>6.2</td>
<td>One-dimensional constitutive model</td>
<td>141</td>
</tr>
<tr>
<td>6.2.1</td>
<td>Elastoplastic decomposition of the axial strain</td>
<td>142</td>
</tr>
<tr>
<td>6.2.2</td>
<td>The elastic uniaxial constitutive law</td>
<td>143</td>
</tr>
<tr>
<td>6.2.3</td>
<td>The yield function and the yield criterion</td>
<td>143</td>
</tr>
<tr>
<td>6.2.4</td>
<td>The plastic flow rule. Loading/unloading conditions</td>
<td>144</td>
</tr>
<tr>
<td>6.2.5</td>
<td>The hardening law</td>
<td>145</td>
</tr>
<tr>
<td>6.2.6</td>
<td>Summary of the model</td>
<td>145</td>
</tr>
<tr>
<td>6.2.7</td>
<td>Determination of the plastic multiplier</td>
<td>146</td>
</tr>
<tr>
<td>6.2.8</td>
<td>The elastoplastic tangent modulus</td>
<td>147</td>
</tr>
<tr>
<td>6.3</td>
<td>General elastoplastic constitutive model</td>
<td>148</td>
</tr>
<tr>
<td>6.3.1</td>
<td>Additive decomposition of the strain tensor</td>
<td>148</td>
</tr>
<tr>
<td>6.3.2</td>
<td>The free energy potential and the elastic law</td>
<td>148</td>
</tr>
<tr>
<td>6.3.3</td>
<td>The yield criterion and the yield surface</td>
<td>150</td>
</tr>
<tr>
<td>6.3.4</td>
<td>Plastic flow rule and hardening law</td>
<td>150</td>
</tr>
<tr>
<td>6.3.5</td>
<td>Flow rules derived from a flow potential</td>
<td>151</td>
</tr>
<tr>
<td>6.3.6</td>
<td>The plastic multiplier</td>
<td>152</td>
</tr>
</tbody>
</table>
6.3.7 Relation to the general continuum constitutive theory 153
6.3.8 Rate form and the elastoplastic tangent operator 153
6.3.9 Non-smooth potentials and the subdifferential 153
6.4 Classical yield criteria ... 157
6.4.1 The Tresca yield criterion 157
6.4.2 The von Mises yield criterion 162
6.4.3 The Mohr–Coulomb yield criterion 163
6.4.4 The Drucker–Prager yield criterion 166
6.5 Plastic flow rules ... 168
6.5.1 Associative and non-associative plasticity 168
6.5.2 Associative laws and the principle of maximum plastic dissipation 170
6.5.3 Classical flow rules ... 171
6.6 Hardening laws ... 177
6.6.1 Perfect plasticity ... 177
6.6.2 Isotropic hardening .. 178
6.6.3 Thermodynamical aspects. Associative isotropic hardening 182
6.6.4 Kinematic hardening. The Bauschinger effect 185
6.6.5 Mixed isotropic/kinematic hardening 189

7 Finite elements in small-strain plasticity problems 191
7.1 Preliminary implementation aspects 192
7.2 General numerical integration algorithm for elastoplastic constitutive equations ... 193
7.2.1 The elastoplastic constitutive initial value problem 193
7.2.2 Euler discretisation: the incremental constitutive problem 194
7.2.3 The elastic predictor/plastic corrector algorithm 196
7.2.4 Solution of the return-mapping equations 198
7.2.5 Closest point projection interpretation 200
7.2.6 Alternative justification: operator split method 201
7.2.7 Other elastic predictor/return-mapping schemes 201
7.2.8 Plasticity and differential-algebraic equations 209
7.2.9 Alternative mathematical programming-based algorithms 210
7.2.10 Accuracy and stability considerations 210
7.3 Application: integration algorithm for the isotropically hardening von Mises model ... 215
7.3.1 The implemented model ... 216
7.3.2 The implicit elastic predictor/return-mapping scheme 217
7.3.3 The incremental constitutive function for the stress 220
7.3.4 Linear isotropic hardening and perfect plasticity: the closed-form return mapping ... 223
7.3.5 Subroutine SUVM ... 224
7.4 The consistent tangent modulus 228
7.4.1 Consistent tangent operators in elastoplasticity 229
7.4.2 The elastoplastic consistent tangent for the von Mises model with isotropic hardening ... 232
7.4.3 Subroutine CTVM ... 235
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>7.4.4</td>
<td>The general elastoplastic consistent tangent operator for implicit return mappings</td>
<td>238</td>
</tr>
<tr>
<td>7.4.5</td>
<td>Illustration: the von Mises model with isotropic hardening</td>
<td>240</td>
</tr>
<tr>
<td>7.4.6</td>
<td>Tangent operator symmetry: incremental potentials</td>
<td>243</td>
</tr>
<tr>
<td>7.5</td>
<td>Numerical examples with the von Mises model</td>
<td>244</td>
</tr>
<tr>
<td>7.5.1</td>
<td>Internally pressurised cylinder</td>
<td>244</td>
</tr>
<tr>
<td>7.5.2</td>
<td>Internally pressurised spherical shell</td>
<td>247</td>
</tr>
<tr>
<td>7.5.3</td>
<td>Uniformly loaded circular plate</td>
<td>250</td>
</tr>
<tr>
<td>7.5.4</td>
<td>Strip-footing collapse</td>
<td>252</td>
</tr>
<tr>
<td>7.5.5</td>
<td>Double-notched tensile specimen</td>
<td>255</td>
</tr>
<tr>
<td>7.6</td>
<td>Further application: the von Mises model with nonlinear mixed hardening</td>
<td>257</td>
</tr>
<tr>
<td>7.6.1</td>
<td>The mixed hardening model: summary</td>
<td>257</td>
</tr>
<tr>
<td>7.6.2</td>
<td>The implicit return-mapping scheme</td>
<td>258</td>
</tr>
<tr>
<td>7.6.3</td>
<td>The incremental constitutive function</td>
<td>260</td>
</tr>
<tr>
<td>7.6.4</td>
<td>Linear hardening: closed-form return mapping</td>
<td>261</td>
</tr>
<tr>
<td>7.6.5</td>
<td>Computational implementation aspects</td>
<td>261</td>
</tr>
<tr>
<td>7.6.6</td>
<td>The elastoplastic consistent tangent</td>
<td>262</td>
</tr>
<tr>
<td>8</td>
<td>Computations with other basic plasticity models</td>
<td>265</td>
</tr>
<tr>
<td>8.1</td>
<td>The Tresca model</td>
<td>266</td>
</tr>
<tr>
<td>8.1.1</td>
<td>The implicit integration algorithm in principal stresses</td>
<td>268</td>
</tr>
<tr>
<td>8.1.2</td>
<td>Subroutine SUTR</td>
<td>279</td>
</tr>
<tr>
<td>8.1.3</td>
<td>Finite step accuracy: iso-error maps</td>
<td>283</td>
</tr>
<tr>
<td>8.1.4</td>
<td>The consistent tangent operator for the Tresca model</td>
<td>286</td>
</tr>
<tr>
<td>8.1.5</td>
<td>Subroutine CTTR</td>
<td>291</td>
</tr>
<tr>
<td>8.2</td>
<td>The Mohr–Coulomb model</td>
<td>295</td>
</tr>
<tr>
<td>8.2.1</td>
<td>Integration algorithm for the Mohr–Coulomb model</td>
<td>297</td>
</tr>
<tr>
<td>8.2.2</td>
<td>Subroutine SUMC</td>
<td>310</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Accuracy: iso-error maps</td>
<td>315</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Consistent tangent operator for the Mohr–Coulomb model</td>
<td>316</td>
</tr>
<tr>
<td>8.2.5</td>
<td>Subroutine CTMC</td>
<td>319</td>
</tr>
<tr>
<td>8.3</td>
<td>The Drucker–Prager model</td>
<td>324</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Integration algorithm for the Drucker–Prager model</td>
<td>325</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Subroutine SUDP</td>
<td>334</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Iso-error map</td>
<td>337</td>
</tr>
<tr>
<td>8.3.4</td>
<td>Consistent tangent operator for the Drucker–Prager model</td>
<td>337</td>
</tr>
<tr>
<td>8.3.5</td>
<td>Subroutine CTDP</td>
<td>340</td>
</tr>
<tr>
<td>8.4</td>
<td>Examples</td>
<td>343</td>
</tr>
<tr>
<td>8.4.1</td>
<td>Bending of a V-notched Tresca bar</td>
<td>343</td>
</tr>
<tr>
<td>8.4.2</td>
<td>End-loaded tapered cantilever</td>
<td>344</td>
</tr>
<tr>
<td>8.4.3</td>
<td>Strip-footing collapse</td>
<td>346</td>
</tr>
<tr>
<td>8.4.4</td>
<td>Circular-footing collapse</td>
<td>350</td>
</tr>
<tr>
<td>8.4.5</td>
<td>Slope stability</td>
<td>351</td>
</tr>
</tbody>
</table>
9 Plane stress plasticity 357
 9.1 The basic plane stress plasticity problem 357
 9.1.1 Plane stress linear elasticity 358
 9.1.2 The constrained elastoplastic initial value problem 359
 9.1.3 Procedures for plane stress plasticity 360
 9.2 Plane stress constraint at the Gauss point level 361
 9.2.1 Implementation aspects 362
 9.2.2 Plane stress enforcement with nested iterations 362
 9.2.3 Plane stress von Mises with nested iterations 364
 9.2.4 The consistent tangent for the nested iteration procedure 366
 9.2.5 Consistent tangent computation for the von Mises model 366
 9.3 Plane stress constraint at the structural level 367
 9.3.1 The method 367
 9.3.2 The implementation 368
 9.4 Plane stress-projected plasticity models 370
 9.4.1 The plane stress-projected von Mises model 371
 9.4.2 The plane stress-projected integration algorithm 373
 9.4.3 Subroutine SUVMPs 378
 9.4.4 The elastoplastic consistent tangent operator 382
 9.4.5 Subroutine CTVPMS 383
 9.5 Numerical examples 386
 9.5.1 Collapse of an end-loaded cantilever 387
 9.5.2 Infinite plate with a circular hole 387
 9.5.3 Stretching of a perforated rectangular plate 390
 9.5.4 Uniform loading of a concrete shear wall 391
 9.6 Other stress-constrained states 396
 9.6.1 A three-dimensional von Mises Timoshenko beam 396
 9.6.2 The beam state-projected integration algorithm 400

10 Advanced plasticity models 403
 10.1 A modified Cam-Clay model for soils 403
 10.1.1 The model 404
 10.1.2 Computational implementation 406
 10.2 A capped Drucker–Prager model for geomaterials 409
 10.2.1 Capped Drucker–Prager model 410
 10.2.2 The implicit integration algorithm 412
 10.2.3 The elastoplastic consistent tangent operator 413
 10.3 Anisotropic plasticity: the Hill, Hoffman and Barlat–Lian models 414
 10.3.1 The Hill orthotropic model 414
 10.3.2 Tension–compression distinction: the Hoffman model 420
 10.3.3 Implementation of the Hoffman model 423
 10.3.4 The Barlat–Lian model for sheet metals 427
 10.3.5 Implementation of the Barlat–Lian model 431
11 Viscoplasticity 435
11.1 Viscoplasticity: phenomenological aspects ... 436
11.2 One-dimensional viscoplasticity model ... 437
 11.2.1 Elastoplastic decomposition of the axial strain 437
 11.2.2 The elastic law .. 438
 11.2.3 The yield function and the elastic domain 438
 11.2.4 Viscoplastic flow rule 438
 11.2.5 Hardening law ... 439
 11.2.6 Summary of the model .. 439
 11.2.7 Some simple analytical solutions 439
11.3 A von Mises-based multidimensional model 445
 11.3.1 A von Mises-type viscoplastic model with isotropic strain hardening .. 445
 11.3.2 Alternative plastic strain rate definitions 447
 11.3.3 Other isotropic and kinematic hardening laws 448
 11.3.4 Viscoplastic models without a yield surface 448
11.4 General viscoplastic constitutive model .. 450
 11.4.1 Relation to the general continuum constitutive theory 450
 11.4.2 Potential structure and dissipation inequality 451
 11.4.3 Rate-independent plasticity as a limit case 452
11.5 General numerical framework ... 454
 11.5.1 A general implicit integration algorithm 454
 11.5.2 Alternative Euler-based algorithms 457
 11.5.3 General consistent tangent operator 458
11.6 Application: computational implementation of a von Mises-based model .. 460
 11.6.1 Integration algorithm ... 460
 11.6.2 Iso-error maps ... 463
 11.6.3 Consistent tangent operator 464
 11.6.4 Perzyna-type model implementation 466
11.7 Examples ... 467
 11.7.1 Double-notched tensile specimen 467
 11.7.2 Plane stress: stretching of a perforated plate 469

12 Damage mechanics 471
12.1 Physical aspects of internal damage in solids 472
 12.1.1 Metals ... 472
 12.1.2 Rubbery polymers .. 473
12.2 Continuum damage mechanics .. 473
 12.2.1 Original development: creep-damage 474
 12.2.2 Other theories ... 475
 12.2.3 Remarks on the nature of the damage variable 476
12.3 Lemaitre’s elastoplastic damage theory .. 478
 12.3.1 The model .. 478
 12.3.2 Integration algorithm .. 482
 12.3.3 The tangent operators ... 485
12.4 A simplified version of Lemaitre’s model 486
 12.4.1 The single-equation integration algorithm 486
 12.4.2 The tangent operator .. 490
 12.4.3 Example. Fracturing of a cylindrical notched specimen 493
12.5 Gurson’s void growth model .. 496
 12.5.1 The model .. 497
 12.5.2 Integration algorithm ... 501
 12.5.3 The tangent operator ... 502
12.6 Further issues in damage modelling .. 504
 12.6.1 Crack closure effects in damaged elastic materials 504
 12.6.2 Crack closure effects in damage evolution 510
 12.6.3 Anisotropic ductile damage .. 512

Part Three Large strains .. 517

13 Finite strain hyperelasticity .. 519
 13.1 Hyperelasticity: basic concepts .. 520
 13.1.1 Material objectivity: reduced form of the free-energy function . 520
 13.1.2 Isotropic hyperelasticity ... 521
 13.1.3 Incompressible hyperelasticity 524
 13.1.4 Compressible regularisation 525
 13.2 Some particular models .. 525
 13.2.1 The Mooney–Rivlin and the neo-Hookean models 525
 13.2.2 The Ogden material model 527
 13.2.3 The Hencky material .. 528
 13.2.4 The Blatz–Ko material .. 530
 13.3 Isotropic finite hyperelasticity in plane stress 530
 13.3.1 The plane stress incompressible Ogden model 531
 13.3.2 The plane stress Hencky model 532
 13.3.3 Plane stress with nested iterations 533
 13.4 Tangent moduli: the elasticity tensors 534
 13.4.1 Regularised neo-Hookean model 535
 13.4.2 Principal stretches representation: Ogden model 535
 13.4.3 Hencky model .. 537
 13.4.4 Blatz–Ko material .. 537
 13.5 Application: Ogden material implementation 538
 13.5.1 Subroutine SUBOGD .. 538
 13.5.2 Subroutine CSTOGD .. 542
 13.6 Numerical examples .. 546
 13.6.1 Axisymmetric extension of an annular plate 547
 13.6.2 Stretching of a square perforated rubber sheet 547
 13.6.3 Inflation of a spherical rubber balloon 550
 13.6.4 Rugby ball ... 551
 13.6.5 Inflation of initially flat membranes 552
13.6.6 Rubber cylinder pressed between two plates 555
13.6.7 Elastomeric bead compression 556
13.7 Hyperelasticity with damage: the Mullins effect 557
 13.7.1 The Gurtin–Francis uniaxial model 560
 13.7.2 Three-dimensional modelling. A brief review 562
 13.7.3 A simple rate-independent three-dimensional model 562
 13.7.4 Example: the model problem 565
 13.7.5 Computational implementation 565
 13.7.6 Example: inflation/deflation of a damageable rubber balloon 569

14 Finite strain elastoplasticity 573
 14.1 Finite strain elastoplasticity: a brief review 574
 14.2 One-dimensional finite plasticity model 575
 14.2.1 The multiplicative split of the axial stretch 575
 14.2.2 Logarithmic stretches and the Hencky hyperelastic law 576
 14.2.3 The yield function 576
 14.2.4 The plastic flow rule 576
 14.2.5 The hardening law 577
 14.2.6 The plastic multiplier 577
 14.3 General hyperelastic-based multiplicative plasticity model 578
 14.3.1 Multiplicative elastoplasticity kinematics 578
 14.3.2 The logarithmic elastic strain measure 582
 14.3.3 A general isotropic large-strain plasticity model 583
 14.3.4 The dissipation inequality 586
 14.3.5 Finite strain extension to infinitesimal theories 588
 14.4 The general elastic predictor/return-mapping algorithm 590
 14.4.1 The basic constitutive initial value problem 590
 14.4.2 Exponential map backward discretisation 591
 14.4.3 Computational implementation of the general algorithm 595
 14.5 The consistent spatial tangent modulus 597
 14.5.1 Derivation of the spatial tangent modulus 598
 14.5.2 Computational implementation 599
 14.6 Principal stress space-based implementation 599
 14.6.1 Stress-updating algorithm 600
 14.6.2 Tangent modulus computation 601
 14.7 Finite plasticity in plane stress 601
 14.7.1 The plane stress-projected finite von Mises model 601
 14.7.2 Nested iteration for plane stress enforcement 604
 14.8 Finite viscoplasticity 605
 14.8.1 Numerical treatment 605
 14.9 Examples 606
 14.9.1 Finite strain bending of a V-notched Tresca bar 606
 14.9.2 Necking of a cylindrical bar 607
 14.9.3 Plane strain localisation 611
 14.9.4 Stretching of a perforated plate 613
 14.9.5 Thin sheet metal-forming application 614
B The tensor exponential 747
B.1 The tensor exponential function 747
B.1.1 Some properties of the tensor exponential function 748
B.1.2 Computation of the tensor exponential function 749
B.2 The tensor exponential derivative 750
B.2.1 Computer implementation 751
B.3 Exponential map integrators 751
B.3.1 The generalised exponential map midpoint rule 752
C Linearisation of the virtual work 753
C.1 Infinitesimal deformations 753
C.2 Finite strains and deformations 755
C.2.1 Material description .. 755
C.2.2 Spatial description .. 756
D Array notation for computations with tensors 759
D.1 Second-order tensors .. 759
D.2 Fourth-order tensors .. 761
D.2.1 Operations with non-symmetric tensors 763
References 765
Index 783