Index

Abnormal returns:
matched portfolios, 74
one-to-one match samples, 75
stock price performance, estimation methodology, 73–74
Absolute risk aversion, storable commodity risk management, 134
Action-based framework, supply chain risk management, 4–7
execution stage, 7
planning stage, 4–7
Adaptive inventory strategy, supply chain risk detection, 84
Additive independence property, storable commodity risk management, operational and financial hedging, 146
Adverse selection problem, procurement contracts, 317–319
AIC metric, score-based learning methods, 547–548
Allocation flexibility:
 risk pooling and, 35–36
tailored operational hedging, 43–45
Ambiguity modeling in supply chains:
 attitude characterization, 107–109
 future research issues, 120–122
 inventory positioning setting, 113–120
 maximin expected utility:
 inventory positioning, 115–120
 models of, 107–108
 origins of, 105–107
 probability distribution characterization, 107
 single period newsvendor setting, 109–113
Arbitrage, financial hedging and, 38
Arbitrage, supply chain contract valuation and, 223–226
Arithmetic Brownian Motion (ABM), production risk, continuous time setting, spot market prices, 180–183
Assembly/disassembly process, beef supply chain model, procurement risk, 466–470
Asymmetric information, supply chain risk management, 394, 396, 413–419
 nondelivery penalties, 418
 quality control, 417–418
 supplier/buyer backup production, 416
 supplier/buyer diversification, 416
 supplier misrepresentation incentives, 413–419
 supplier qualification screening, 417
Auctions, supply chain risk management:
 competing suppliers, 400
design of, 415
Background risks:
- beef supply chain model, procurement risk, 466–470
- identification of, 21
Backup agreements:
- supplier/buyer backup production, asymmetric information and, 416
- supply chain contracts, 220
Backup supply sources, supply chain risk management, 89–92
- availability and cost, 90–91
- external/internal sources, 392, 397
- response time and magnitude, 91–92
Bang-bang control structure, production risk, continuous time setting, 183–185
Bank costs, bankruptcy-prone newsvendor problem, 257–262
Bank credit, trade credit vs., 285
Bank financing:
- bankruptcy-prone newsvendor problem:
 - retailer’s bank financing, 274–275
 - supplier’s problems, 279–283
- capital-constrained newsvendor inventory model, loan schedule coordination:
 - equity-efficiency effects, 377–380
 - future research issues, 380–382
 - literature review, 363–366
 - numerical analysis, 370–377
 - research background, 363–366
 - Stackelberg game, 366–370
 - procurement financing, 292–294
Bankruptcy costs:
- bankruptcy-prone newsvendor problem, 256–266
- capital structure, production/inventory management, wipeout bankruptcy, 354–355
- inventory management, capital constraints, 251–253
Bankruptcy-prone supply chains:
- selling to, 266–272
 - optimal order quantity, 266–268
 - Stackelberg game, between supplier and retailer, 268–272
trade credit contract financing, 272–285
- early payment discount model, 273–274
- retailer’s perspective, supplier or bank financing, 274–279
- supplier financing, 283–285
- supplier’s perspective, optimal contract parameters, 279–283
wholesale pricing:
- bank’s bankruptcy costs and retailer’s debt capacity, 256–262
- newsvendor problem, 256–266
- retailer’s optimal order quantity, 262–264
- retailer’s profit model, 256–257
Bankruptcy threshold, bankruptcy-prone newsvendor problem:
- retailer’s optimal order quantity, 262–264
- retailer’s profit model, 256–257
- supplier financing, 276–278
Base demand, tailored operational hedging, 45
Base II accord, 114
Basel Committee, electric utility risk management, 497
Base-stock structure:
- cash and goods, capital structure, production/inventory management, 338–342
- newsvendor model, no cash constraints, 342–343
- numerical examples, 344–346
- short-term decisions, dividend, borrowing and inventory, 350–351
- financial hedge portfolio optimization, 142–143
- optimality opportunity costs, warehouse problem:
 - computation, 458–459
 - financial hedging, 460
 - inventory-dependent pricing, 457–458
 - inventory-independent pricing, 458
inventory subdivisions, 455–457
model parameters, 450–452
overview, 447–449
stochastic price dynamics, 459–460
single contract financial hedging, optimal policy per period, 140–142
storable commodity risk management, 131–132
supplier portfolio management, demand risk, dynamic model, 438–442
supply chain contracts, two-period models, 235–236
Basis risk, production risk, single period models:
multiple uncertainties, 170–177
costly hedging, 173–175
yield risks and, 175–177
price uncertainty, options-based hedging, 167–170
Bayesian theory:
business process standards, supply chain risk management:
constraint-based learning, 548
future research issues, 561
global supply chain case study, 550–560
data processing and learned risk model, 551–552
risk modeling and analysis, 552–557
root cause analysis, parent nodes of risk systems, 557–560
heterogeneous risk model learning, 546
hierarchical causal structure, 545
inferential risk analysis, 548–550
literature review, 541–542
quantification through Bayesian learning, 545–546
research background, 537–541
risk categorization, 543–545
score-based learning, 547–548
standard business procedures, 544
two-dimensional risk categorization framework, 544–545
price risk, single period models, production planning, forwards/futures contracts, 165–167
Beef supply chain model, procurement risk management:
computational experiments, 477–482
contract market transaction costs, 484–486
decision parameters, 473–474
demand and product substitution, 488–490
future research issues, 490–492
literature review, 470–473
processing decision, 474
production decision, 474–475
research background, 465–470
spot price and product market variability, 482–484
Behavioral decision making, ambiguity modeling, future research issues, 121
Below-mean semivariance, quantitative risk assessment, 25
Below-target t semivariance, quantitative risk assessment, 25
Benchmarking parameters:
bankruptcy-prone newsvendor problem:
retailer’s problem, 274–275
supplier bank financing, 279
real options valuation, B-S &M option pricing model, 209, 211
Bertrand competition, supply chain risk management, 403–404
Binomial tree structure, supply chain contracts:
three-period model, 240
two-period models, 234–235
Black, Scholes, and Merton option pricing model:
basic principles, 200–205
real options valuation using, 205–214
aptness, 211–214
case study, 207–211
discounting, 212
distribution, 212
volatility, 212–214
Boeing’s Dreamliner production delay case study, supply chain disruption, 71–72

Borrowing, capital structure, production/inventory management, short-term decisions, 347–351

Brownian motion, electric utility risk management:
liquidity risk, 508–510
static hedging, 504–507

Budget constraints, procurement financing model, 295–297
retailer’s optimal ordering strategy, 299–302
supplier’s optimal contract, 302–305
wholesale contract, 298–299

Business Continuity Planning (BCP) program (Cisco), 527–528

Business partnerships, supply chain risk management and, 528–529

Business process standards, supply chain risk management, Bayesian framework:
constraint-based learning, 548
future research issues, 561
global supply chain case study, 550–560
data processing and learned risk model, 551–552
risk modeling and analysis, 552–557
root cause analysis, parent nodes of risk systems, 557–560
heterogeneous risk model learning, 546
hierarchical causal structure, 545
inferential risk analysis, 548–550
literature review, 541–542
quantification through Bayesian learning, 545–546
research background, 537–541
risk categorization, 543–545
score-based learning, 547–548
standard business procedures, 544
two-dimensional risk categorization framework, 544–545

Buy-and-inject (BI) action, base stock optimality model:
inventory-dependent price, 457
inventory-independent price, 458
model parameters, 449–452
opportunity cost rotation, 455–457
value function, 453–460

Buyback contract, ambiguity modeling, supply chains, 121–122

Buyers:
beef supply chain model, procurement risk, 467–470
supply chain risk management:
competing buyers, 393–394, 396, 402–406, 411–413
competition and diversification benefits for, 406–407
contract design and competition commitment, 404–406
impact of disruption on, 401–404
incentive misalignment with suppliers, 393, 398
supply chain risk management and relationships with, 522–523

Call options:
financial hedging and, 37–38
perfect hedge ratio (call option delta), 204
storable commodity risk management, discrete and continuous demand, 151–152

Call value, Black, Scholes, and Merton option pricing model, 202–205

Capabilities development, supply chain risk management, 518–523
architect function, 521–522
information collection, communication and response, 518–519
performance and design metrics, 520–523
relationship structure and management, 522–523
sourcing trade-off quantification, 520–521
uncertainty impact assessment, 519–520

Capacity constraints:
base stock optimality model:
inventory-independent price, nonlinearity, 458
inventory subdivision, capacity unconstrained problem, 456–457
optimal nontrivial capacity underutilization, 458
beef supply chain model:
future investment decisions, 492
process-based risk, 474
expansion alternative, real options valuation, B-S &M option pricing model, 207–211
volatility, 213–214
production risk, continuous time setting, 185–188
supply chain risk management, 390–391
tailored operational hedging, 44–45
Capacity reservation supply chain contracts, 220–221
Capital Asset Pricing Model (CAPM):
procurement financing, 316–319
storable commodity risk management, 134–135
Capital asset risk, defined, 21
Capital-constrained newsvendor (CCNV) model, bank financing, loan schedule coordination:
equity-efficiency effects, 377–380
future research issues, 380–382
literature review, 363–366
numerical analysis, 370–377
research background, 363–366
Stackelberg game, 366–370
Capital structure, production/inventory management:
base-stock policies, cash and goods, 338–342
bibliographical sources, 358–360
coordination vs. decentralization, 351–352
dimensionality reduction, 334
discrete-time model parameters, 330–333
future research issues, 357–358
long-term decisions, 346–353
myopic optimum, 336–337
non-negative dividends, 356–357
numerical examples, 344–346
operations and finance, 327–329
optimal policy properties, 333–346
optimization of, 352–353
pecking order optimality, 337
short-term decisions, dividend, borrowing, and inventory, 347–351
standard newsvendor inventory model, no cash constraints, 342–343
wipeout bankruptcy, 354–355
Captive supplies, beef supply chain model, procurement risk, 472–473
Cash flow projections:
capital structure, production/inventory management, base-stock policies, cash and goods, 338–342
real options valuation, B-S &M option pricing model:
by investment stage, 209–211
by net present value, 207–209
Cattle cycle dynamics, beef supply chain model, procurement risk, literature review, 471–473
Certainty equivalent, ambiguity modeling, 104–105
Chaining, tailored operational hedging, 45
Cisco-Sichuan earthquake case study, supply chain risk management, 527–533
action-based strategies, 529–530
Business Continuity Planning program, 527–528
business partnerships, 528–529
corporate culture for risk management, 527
impact quantification, 530–531
manufacturing base risk mitigation, 532
monitoring and crisis management program, 528
opportunity in disruption, 532–533
product resiliency, 528
senior management support, 533
supply base risk mitigation, 531
supply resiliency, 528
Coefficient of absolute risk aversion, 26–27
Coefficient of variation, procurement financing, retailer-supplier equilibrium computations, 313–315
Collateral constraints:
 bankruptcy-prone newsvendor problem, 265–266
 inventory financing, 251–253
Collateral protected fixed fees, bankruptcy-prone newsvendor problem, bank’s bankruptcy costs and retailer’s debt capacity, 259–262
Commercial risk, 19
Commitment timing, supplier-development strategy, 97–98
Commodity exchanges:
 financial hedge portfolio optimization, 142–143
 single contract financial hedging, buyer’s utility function, 137–139
 storable commodity risk management, 132–133
 price and demand dynamics, 150–152
 research background, 127–129
Commodity storage, base stock optimality opportunity costs:
 example, 449–450
 overview, 448–449
Communication strategies:
 demand management, supply chain risk, 95–96
 supply chain risk management, 518–519
Competency risks, identification of, 19
Competition:
 procurement contracts, 296–297
 retailer-supplier equilibrium computations, 313–315
 supplier-development strategy, 96–97
 supplier information misrepresentation, 414–415
 supply chain disruption, 63
 competing buyers, 401–406
 competing manufacturers, 408–413
 competing suppliers, 393, 396, 398–400, 406–407, 414–415
 diversification and, 401–404
Competitive loan pricing:
 bankruptcy-prone newsvendor problem, bank’s bankruptcy costs and retailer’s debt capacity, 258–262
 inventory management, 251–253
 procurement contracts, external financing, 308–310
Competitive risk, 21
 single period models, production planning, 160–170
 forwards/futures contracts, 163–167
 options model, 167–170
Concave utility function:
 capital structure, production/inventory management, 335
 financial hedge portfolio optimization, 142–143
 price risk, single period models, production planning, 160–170
 options-based hedging, 168–170
 risk assessment and, 26–27
Conditional Value-at-Risk, ambiguity modeling, 104–105
 single period newsvendor setting, 109–113
Constant absolute risk aversion (CARA), production risk, single period models:
 multiple uncertainties, price and basis risks, 174–177
 price uncertainty, 161–170
 options-based hedging, 168–170
 yield risks, 175–177
Consumption volume risk:
 electric utility risk management, static hedging, 505–507
 storable commodity risk management, 129
Contingency planning:
 risk recovery, 29–30
 supply risk management, payments contingent on supply events, 392, 397, 418
Contingent claims methodology:
 basic principles, 198–200
 financial option pricing model, 201–205
equations, 203–204
risk neutrality, 205
future research perspectives, 214–215
real options valuation in operations, 205–214
aptness, 211–214
case study and applications, 207–211
discounting, 212
distribution, 212
volatility, 212–214
Contract cattle, beef supply chain model, procurement risk:
 computational methods, 477–482
 contract market transaction costs, 484–486
 processing decision, 474
 procurement decisions, 473–474
 quality differences, 486–487
 spot price and product market variability, 482–484
 stochastic recourse model, 475–476
 utilization cost parameter, 487–488
Contract markets, beef supply chain model, procurement risk, 467–470
captive supplies, 472–473
computational methods, 477–482
procurement decisions, 473–474
transaction cost effects, 484–486
Convenience yield, real options valuation, B-S &M option pricing model, 211–212
Cooperative decision-making, supply chain risk management, 420–421
Coordinated decisions, capital structure, production/inventory management, 351–353, 357–358
Coordination risk:
 ambiguity modeling, supply chains, 121–122
 identification of, 20
Coupon payment, capital structure, production/inventory management, short-term decisions, 347–351
Credit contracts:
 electric utility risk management, liquidity risk, 509–510
 procurement financing, 290–294, 295–297, 316–319
 adverse selection problem, 317–319
 external financing, 308–310
 invariant equilibrium, 305
 nonoperative supply chain, 306–307
 retailer-supplier equilibrium computations, 311–315
 supplier’s optimal contract, 304–306
 procurement financing equilibrium, 299–307
 nonoperative supply chain, 306–307
 retailer’s optimal ordering strategy, 299–302
 supplier’s optimal contract, 302–305
Crisis management, supply chain risk and, 528
Cross-functional risk expertise:
 storable commodity risk management, 131–132, 153–154
 supply chain disruption, 68
Cross hedging, single period models, production planning, multiple uncertainties, 170–173
Cross-price elasticity parameter, beef supply chain model, procurement risk, product and demand substitution, 488–490
Cumulative demand, production risk, continuous time setting, 180–183
Cumulative distribution function (CDF), supply chain financing, demand uncertainty, 254–256
Currency risk, forward contracts and swaps and, 39–41
Customer Value Chain Management (CVCM) (Cisco), Sichuan earthquake, supply chain disruption case study, 527–533

Decentralized operations:
capital structure, production/inventory management, 351–353, 357–358
supply risk management:
 asymmetric information, 394, 396, 413–419
 auction mechanisms, 415
 backup supply sources, internal/external, 392, 397
 backup supply sources, supplier/buyer, 416
 competing buyers, 393–394, 396, 402–406, 411–413
 competing manufacturers, 408
 competing suppliers, 393, 396, 398–400, 406–407, 414–415
 competition vs. diversification, 401–406
 Cournot competition, 409–410
 critical part shortage/loss of supplier capacity, 390–391
diversification strategies, 400–401, 416
future research issues, 419–421
incentive misalignment, suppliers and buyers, 393, 398
literature taxonomies, 394–397
market-entry competition, 410
multisourcing strategies, 392, 397
production costs, private information about, 413–414
quality controls, 417–418
research background, 389–390
supplier misrepresentation incentives, 413–416
supplier qualification screening/risk discovery, 392, 396, 417
supplier subsidies, competing buyers, 411–413
supply cost inflation, 391
supply reliability, private information about, 414
trading mechanisms, 415–416
uncertainty characteristics, 397

Decision support systems, supply chain disruptions, 99
Decision theory:
 ambiguity modeling, 107–109
 attitude characterization, 107–109
 future research issues, 120–122
 supply chain inventory management, 113–120
 bankruptcy-prone supply chains, trade credit model, 273–274
 beef supply chain model, procurement risk:
 basic principles, 473–474
 processing decision, 474
 production decision, 474–475
 stochastic recourse model, 475–476
capital structure, production/inventory management:
 coordinated vs. decentralized decisions, 351–352
 long-term decisions, 346–353
 optimal short-term decisions, 347–351
 Ellsberg paradox, 105–107
storable commodity risk management, management behavior, 153–154
supply chain risk management, time-based supplier competition decisions, 406–407
Decision tree analysis (DTA), real options valuation and, 199–200
future research issues, 215
volatility, 214
Decreasing absolute risk aversion (DARA), price risk, single period models, production planning, 161
Index

Default penalty, capital structure, production/inventory management, 337–338
short-term decisions, dividend, borrowing and inventory, 350–351

Default probability, capital-constrained newsvendor model, bank financing, equity effects, 373–377

Delivery lead-time risk, critical parts shortages, supply chain risk management, 391

Demand pooling:
operational hedging and, 35
tailored operational hedging, 45

Demand risk:
ambiguity modeling:
single period newsvendor setting, 109–113
supply chain inventory management, 114–120
bankruptcy-prone newsvendor problem:
bank’s bankruptcy costs and retailer’s debt capacity, 260–262
optimal trade credit contract parameters, 280–283
beef supply chain model, procurement risk:
computation methods, 479–482
literature review, 470–473
production decisions and, 475
electric utility risk management, time and seasonal variations, 496
identification of, 20
integrated production and risk hedging, financial instruments, 159
multiperiod models, continuous time settings, 179–192
options-based hedging of, 36–38
procurement financing, retailer-supplier equilibrium computations, 313–315
single contract financial hedging, buyer’s utility function, 138–139

storiable commodity risk management:
discrete and continuous demand, 150–152
operational and financial hedging, 148–150
supplier portfolio management:
dynamic model, progressive demand revelation, 436–442
future research issues, 442–443
literature review, 428–430
overview, 425–428
static model, 430–436
supply chain contract valuation, volatility effect, 237–238
supply chain disruption, forecasting accuracy, 65
supply chain financing, 254–256
supply chain risk management, 92–96, 540
communication, 95–96
rationing, 94–95
switching strategies, 93
tailored operational hedging and, 42–43
weather derivatives, 38–39

Demand substitution, beef supply chain model, procurement risk:
effect of, 488–490
production decisions and, 475

Derivative instruments:
demand risk, weather derivatives, 38–39
electric utility risk management, 496–497

Design strategies, supply chain risk management, 520–521

Detection strategies, supply chain risk management, 84

Deterministic methods, ambiguity modeling, supply chain inventory management, 117–120

Discounted cash flow (DCF):
investment applications, 198–200
real options valuation, B-S &M option pricing model, 207–210
discounting methods, 212
distribution, 212

Discrete and continuous risk management:
supply chain contract valuation, volatility effect, 237–238
supply chain disruption, forecasting accuracy, 65
supply chain financing, 254–256
supply chain risk management, 92–96, 540
communication, 95–96
rationing, 94–95
switching strategies, 93
tailored operational hedging and, 42–43
weather derivatives, 38–39

Demand substitution, beef supply chain model, procurement risk:
effect of, 488–490
production decisions and, 475

Derivative instruments:
demand risk, weather derivatives, 38–39
electric utility risk management, 496–497

Design strategies, supply chain risk management, 520–521

Detection strategies, supply chain risk management, 84

Deterministic methods, ambiguity modeling, supply chain inventory management, 117–120

Discounted cash flow (DCF):
investment applications, 198–200
real options valuation, B-S &M option pricing model, 207–210
discounting methods, 212
distribution, 212
Discounting, real options valuation, B-S & M option pricing model, 212
Discount rate, supply chain disruptions, risk assessment and, 59–60
Disruption risk:
 - basic principles, 15–17
 - qualitative assessment of, 24
 - supply chain risk management, 5–6
Distribution risk:
 - identification of, 20
 - real options valuation, B-S & M option pricing model, 212
Diversification:
 - flexible networks and, 36
 - operational hedging and, 34–36
 - supply chain risk management, 86–89, 400–401, 416
 - buyer’s benefits, 406
 - competition and, 401–404
 - consistency, 88–89
 - cost issues, 86–87
 - failure correlation, 87–88
 - network configuration, 87
 - supplier asymmetric information, 416
 - tailored operational hedging and, 43
Dividend yield:
 - Black, Scholes, and Merton option pricing model, 201–205
 - capital structure, production/inventory management:
 - non-negative dividends, 356–357
 - optimal structure, 352–353
 - short-term decisions, 347–351
Double marginalization inefficiency, procurement contracts, 296–297
Downside risk metrics, quantitative risk assessment, 25
Downstream processing, beef supply chain model, procurement risk, 467–470
Downward product substitution, beef supply chain model, procurement risk, production decisions and, 475
Dual sourcing:
 - storable commodity risk management, operational and financial hedging, 144–150
 - supplier portfolio management, demand risk, static models, 433–436
Dynamic pooling, tailored operational hedging, 43–45
Dynamic programming model:
 - base stock optimality opportunity costs, 450–452
 - supplier portfolio management, demand risk, 436–442
Early payment discount trade credit model:
 - bankruptcy-prone supply chains, 273–274
 - procurement financing, 292–294
Economic efficiency, capital-constrained newsvendor model, bank financing, numerical study, 373–377
Efficient frontier, storable commodity risk management, operational and financial hedging, 148–150
Electric utility risk management:
 - electricity forward curve, 498–501
 - liquidity risk, 508–510
 - operational and political risk, 510–511
 - price risk, 497–498
 - research background, 495–497
 - static hedging, 503–507
 - volume risk, 501–503
Ellsberg paradox, ambiguity modeling:
 - attitude characterization, 107–109
 - two-color experiment, 105–107
Entropy metric, score-based learning methods, 547–548
Equilibrium order quantity, bankruptcy-prone newsvendor problem, Stackelberg game, supplier-retailer interaction, 271–272
Equilibrium outcomes:
capital-constrained newsvendor model:
 efficiency losses and, 381–382
 Stackelberg game, 369–370
electric utility risk management, 496–497
procurement financing:
 computational experiments, 310–315
 external financing, 307–310
noncooperative retailer, credit contract, 306–307
supply chain risk management,
multiplicity of equilibria, 407
European put option, Black, Scholes, and Merton option pricing model, 201–205
Exchange clearinghouses, electric utility risk management, 496–497
Execution, supply chain disruption and, 64–65
Exercise price, supply chain contract valuation, 236–237
Expected present value (EPV), capital structure,
 production/inventory management, 336–337
 future research issues, 357–358
no cash constraints, newsvendor model, 342–343
wipeout bankruptcy, 354–355
Expected shortfall, electric utility risk management, price risk, 498
Expected utility (EU) theory. See also Maximin expected utility (MEU) theory; Smooth Recursive Expected Utility ambiguity modeling, 104–105
Ellsberg paradox, 105–107
Bayesian inferential learning, 550
Expected value approach:
 ambiguity modeling, supply chain inventory management, 117–120
 capital structure, production/inventory management, 334
Exposure mitigation, operational risk management, 48
External financing, procurement contracts, 289–294, 316–319
 computational experiments, 310–315
equilibrium outcomes, 307–310
External risk, supply chain risk management, 5
ambiguity modeling, 114–150
Failure correlation, supply chain risk management, 87–88
Financial risk management and hedging:
 base stock optimality model, 460
 basic principles of, 14–15
capital structure, production/inventory management, 327–329
currency risk, forward demands and swaps, 39–41
demand risk:
 options, 36–38
 weather derivatives, 38–39
integrated operations for, 9–10
integrated production and risk hedging:
 multiperiod models, 177–192
 continuous time setting, priced and demand risk, production planning in, 179–192
 multiple uncertainties, production planning under, 179
 price uncertainty, production planning under, 178–179
research background, 157–159
 single period models, 159–177
 multiple uncertainties, production planning under, 170–177
 price uncertainty, production planning under, 160–170
inventory finance:
 bankruptcy-prone newsvendor problem:
 bankruptcy costs, 256–266
 bank’s bankruptcy costs, retailer’s debt capacity, 257–262
Financial risk management and hedging: (Continued)
retailer’s optimal order quantity, fixed wholesale price, 262–265
data from log-normal distributions, 35–36
retailer’s profit model, 256–257
risk pooling and, 35–36
sensitivity analysis, 265–266
financial, trade credit contracts, 272–273
bankruptcy-prone supply chains, wholesale price contracts, 255
decision time line, 256
early payment discount trade credit model, 273–274
future research issues, 285–286
model parameters, notation and assumptions, 253–255
research background, 249–253
retailer financing, profitability improvement, 283–285
retailer’s problem, supplier or bank financing, 274–279
supplier’s optimal contract parameters, 279–283
operational hedging vs., 41
operational risk, 36–41
storable commodity risk management: financial hedges portfolio, optimal policy, 142–143
literature review, 132–133
management behavior, 150–152, 153–154
model applications and results, 150–152
operational and financial hedges, 143–150
mean, variance and utility impacts, 147–150
service-level impact, 144–146
problem setting, 129–132
notation and assumptions, 133–136
utility function, 136–137
research background, 127–129
single contract financial hedging, optimal policy, 137–142
buyer’s utility function, 137–139
periodic optimization, 139–142
supply chain contract valuation: assumptions, 228
demand volatility effect, 237–238
dual formulation, 231–234
exercise price effect, 236
experimental study, 234–235
financial markets, arbitrage, and martingales, 223–226
future research issues, 243
holding cost effect, 241–242
model parameters, 226–231
notation, 227–228
number of options effect, 236
purchase effect, 236–237
research overview, 219–223
riskless asset interest rate, 239–240
sales price effect, 240–241
stock-out cost effect, 242–243
stock price volatility, 238–239
Finished goods inventory losses, supply chain risk management, defective parts, 391
Finite debt capacity, bankruptcy-prone newsvendor problem, bank’s bankruptcy costs and retailer’s debt capacity, 260–262
Flexibility:
risk pooling and, 35–36
supply chain disruption and, 66–67
tailored operational hedging, 43–45
Flexibility premium, real options valuation and, 198–200
Foreign exchange forward market, currency risk and, 39–41
Forward contracts:
currency risk and, 39–41
electric utility risk management, 496–497
electricity forward curve, 498–500
liquidity risk, 508–510
static hedging, 503–507
volume hedging, 501–503
production risk:
multiperiod models, 178–179
single period models, 163–167
storable commodity risk management, 130–132
supply chain contracts, 221
Forward Monte Carlo simulation, Bayesian inferential learning, 549–550
Frictionless markets, Black, Scholes, and Merton option pricing model, 201–205
Full hedging, price risk, single period models, production planning, forwards/futures contracts, 167
Futures contracts:
currency risk and, 39–41
financial hedge portfolio optimization, 143
production risk:
multiperiod models, 179
single period models:
price risk, 163–167
yield risk, multiple uncertainties, 175–177
single contract financial hedging:
buyer’s utility function, 138–139
multiple uncertainties, price and basis risks, 170–173
operational and financial hedging, 146
optimal policy per period, 140–142
storable commodity risk management, 130–132
discrete and continuous demand, 151–152
Gamma distribution, supplier portfolio management, demand risk:
dynamic model, 437–442
static models, 433–436
Generalized failure rate:
increasing generalized failure rate, procurement financing model, 298–299
procurement contracts, 297–298
Genzyme case study, supply chain disruptions, 79–82
Geometric Brownian motion:
production risk, continuous time setting, spot market prices, 180–183
storable commodity risk management, 152
Geometric Wiener process (GWP), Black, Scholes, and Merton option pricing model, 201–205
Globalization, integrated risk management and, 3–4
Global score metric-based learning, 547–548
Global supply chain case study, risk modeling for, 550–560
data processing and learned risk model, 551–552
risk modeling and analysis, 552–557
root cause analysis, parent nodes of risk systems, 557–560
Hamilton-Jacobi-Bellman (HJB) equation, production risk, continuous time setting, 182–183
Hazards:
defined, 14
identification of, 17–19, 21
risk assessment and valuation:
mean-variance preference, 27–28
preferences and utility functions, 26–27
qualitative risk assessment, 22–24
quantitative risk assessment, 24–25
Hedge ratio, electric utility risk management, static hedging, 506–507
Hedging:
electric utility risk management, static hedging, 504–507
financial hedging, 36–41, 132–133
portfolio optimization, 142–143
integrated production and risk hedging, financial instruments:
multiperiod models, 177–192
continuous time setting, priced and demand risk, production planning in, 179–192
Hedging: (Continued)
 multiple uncertainties, production planning under, 179
 price uncertainty, production planning under, 178–179
 research background, 157–159
 single period models, 159–177
 multiple uncertainties, production planning under, 170–177
 price uncertainty, production planning under, 160–170
 natural hedging, 35
 price risk, single period models, production planning, forwards/futures contracts, 163–167
 risk mitigation and, 13–14
 single contract financial hedging:
 buyer’s utility function, 138–139
 optimal policy per period, 140–142
 storable commodity risk management strategies for, 132–133
 supply chain contract valuation, 221–223

Heterogeneous risks:
 Bayesian learning model, 546
 pooling of, 35–36

Hierarchical causal structure, supply chain risk management, 545–546

Importance sampling, Bayesian inferential learning, 549–550

Incentives:
 supplier-development strategy, 96–97
 supplier incentives, portfolio management, 443
 supplier misrepresentation, 413–419
 supply chain risk management, supplier-buyer misalignment of, 393, 398

Income effect, price risk, single period models, production planning, forwards/futures contracts, 164–167

Increasing absolute risk aversion (IARA), price risk, single period models, production planning, 161

Increasing failure rate (IFR):
 bankruptcy-prone newsvendor problem:
 bank’s bankruptcy costs and retailer’s debt capacity, 259–262
 optimal trade credit contract parameters, 279
 capital-constrained newsvendor model, Stackelberg game, 367–370
 supply chain financing, demand uncertainty, 254–256

Increasing generalized failure rate, procurement financing model, wholesale contract, budget constraints, 298–299

Inferential risk analysis, Bayesian learning and, 548–550

Infinite horizon, capital structure, production/inventory management, 334, 358

Infinite maturity debt, capital structure, production/inventory management, long-term decisions, 346–353

Information:
 collection, communication, and response, 518–519
 distortion, ambiguity modeling, 114–120
 risk, identification of, 20
 updating, operational hedging and, 35–36

Initial public offering (IPO), procurement financing, 293–294

Innovation risk, 19

Intangible asset risk, defined, 21

Integrated risk management:
 finance risk management, 9–10
 financial instruments, production and risk hedging:
 multiperiod models, 177–192
 continuous time setting, price and demand risk, 179–192
 multiple uncertainties, production planning under, 179
price uncertainty, production planning under, 178–179
research background, 157–159
single period models, 159–177
multiple uncertainties, production planning under, 170–177
price uncertainty, production planning under, 160–170
research background, 3–4
storable commodity risk management as, 132–133
Interaction flow, supply chain risk management, 545–546
Interest rates:
bankruptcy-prone newsvendor problem, supplier vs. risk-free rates, 283
capital-constrained newsvendor model, bank financing, 381–382
capital structure, production/inventory management, 333
short-term decisions, 347–351
procurement financing, external financing, 309–310
production planning, risk-free rates, 191
supply chain contract valuation, riskless asset interest rate, 239–240
Internal financing, procurement contracts, 289–297
equilibrium computations, 310–315
Internal rate of return (IRR), investment applications, 198–200
Internal risk, supply chain risk management, 5
ambiguity modeling, 114–120
International standard, supply chain risk management, 534
 Interruption insurance, supply chain disruption management, 100
Inventory management:
ambiguity modeling, 113–120
maximin expected utility, 115–120
base stock optimality opportunity costs, warehouse problem: computation, 458–459
financial hedging, 460
inventory-dependent pricing, 457–458
inventory-independent pricing, 458
capital structure:
base-stock policies, cash and goods, 338–342
coordination vs. decentralization, 351–352
future research issues, 357–358
long-term decisions, 346–353
myopic optimum, 336–337
pecking order optimality, 337
short-term decisions, dividend, borrowing, and inventory, 347–351
standard newsvendor inventory model, no cash constraints, 342–343
wipeout bankruptcy, 354–355
demand risk and, 36–38
financial hedge portfolio optimization, 143
storable commodity risk management, 135
financial hedges portfolio, optimal policy, 142–143
literature review, 132–133
early payment discount trade credit model, 273–274
trade credit contract financing, bankruprt-prone supply chains, 272–285
early payment discount model, 273–274
retailer’s perspective, supplier or bank financing, 274–279
supplier financing, 283–285
supplier’s perspective, optimal contract parameters, 279–283
Investment methods, real options valuation and, 198–200
cash flow and stages of, 208–211
Johnson Amendment (Farm Bill 2008), beef supply chain model, procurement risk, 472–473
Joint supplier financing with bank, procurement financing, 292–294

Just-in-time delivery, supply chain disruption and, 64

Lead times, supply chain disruption, mean and variance reduction in, 65

Learned risk model, global supply chain case study, 551–552

Learning algorithms, supply chain risk management, heterogeneous risk model, 546

Limited liability, procurement contracts, 296–297

Linear programming optimization:
base stock optimality model, 452
computation, 458–459
supply chain contract valuation:
dual formulation, 233–234
maximum value determination, 228–231

Liquidity risks:
capital structure, production/inventory management, pecking order optimality, 337
electric utility risk management, 496–497, 508–510
inventory financing, 251–253

Loan pricing, inventory management, 251–253
bank financing, newsvendor inventory model, loan schedule coordination:
equity-efficiency effects, 377–380
future research issues, 380–382
literature review, 363–366
numerical analysis, 370–377
research background, 363–366
Stackelberg game, 366–370
Weibull distribution, 383–384

Lognormal distribution:
Black, Scholes, and Merton option pricing model, 202–205
electric utility risk management, electricity forward curve, 500
real options valuation, B-S &M option pricing model, 212
storable commodity risk management, 152

Long-term contracts:
capital structure, production/inventory management, 346–353
integrated production and risk hedging, financial instruments, 159
storable commodity risk management, 129–132, 134

Markowitz’s optimal portfolio selection:
mean-variance preference and, 27–28
risk-return trade-offs, 31–33
storable commodity risk management, 136–137

Martingales:
electric utility risk management, electricity forward curve, 500
supply chain contract valuation and, 223–226
dual formulation, 231–234

Matching portfolios, abnormal returns, 74

Mattell product recall case study, supply chain disruption, 70–71

Maturity-date assumption, capital structure, production/inventory management, long-term decisions, 346–353

Maximin expected utility (MEU) theory:
ambiguity modeling:
attitude characterization, 107–109
basic principles, 103–105
single period newsvendor setting, 109–113
supply chain inventory management, 114–120
Ellsberg paradox, 106–107

Mean-variance criteria:
ambiguity modeling:
probability distribution, 107
single period newsvendor setting, 110–113
risk-averse valuation, 27–28
single contract financial hedging, operational and financial hedging, 147–150
single period models, production planning, price and basis risks, 170–173
storable commodity risk management, 130–133
utility function, 136–137
supply chain disruption and lead time estimation, 65
tailored operational hedging and, 42–43
Measurement process, supply chain risk management, 7
Minimum variance hedges (MVH), price risk, single period models, production planning, forwards/futures contracts, 165–167
Modigliani-Miller Theorem:
bankruptcy-prone supply chains: retailer’s perspective, bank financing, 275
supplier financing, 277–278
wholesale price contracts, 256–266
capital structure, production/inventory management: operations and finance, 328–329
optimal structure, 353
inventory financing, 250–253
supply chain risk management, 10
Monitoring of risk:
Cisco supply chain monitoring and crisis management program, 528
supply chain disruption management and, 68
supply chain environment, 527
supply chain risk management, 540
Monte Carlo simulation:
base-stock optimality, financial hedging, 460
real options valuation, B-S & M option pricing model, volatility parameters, 212–214
Multisourcing:
supplier portfolio management, demand risk and, 429–430, 442–443
supply chain risk management and, 392, 397
tailored operational hedging, 45–47
Myopic hedging:
capital structure, production/inventory management, 336–337
short-term decisions, dividend, borrowing and inventory, 349–351
wipeout bankruptcy, 354–355
storable commodity risk management:
buyer’s utility function and, 147–150
discrete and continuous demand, 151–152
Nash equilibrium, capital-constrained newsvendor model, bank financing, 381–382
National Center for Crisis and Continuity Coordination (NC4), supply chain risk management and, 529–530
Natural disasters:
critical parts shortages, supply chain risk management, 390–391
electric utility risk management, operational and political risk, 510–511
supply chain disruptions and, ambiguity modeling, 114–120
Natural hedging, pure diversification and, 35
Natural risk, 21
Net present value (NPV):
investment applications, 198–200
real options valuation, B-S & M option pricing model, cash flow projections and, 207–209
storable commodity risk management, 136–137
Network configuration, supply chain risk management, 87
<table>
<thead>
<tr>
<th>Term</th>
<th>Page References</th>
</tr>
</thead>
<tbody>
<tr>
<td>Newsvendor model</td>
<td>ambiguity modeling, single period setting, 103–105, 109–113, 120–122</td>
</tr>
<tr>
<td></td>
<td>bank financing, loan schedule coordination: future research issues, 380–382</td>
</tr>
<tr>
<td></td>
<td>numerical analysis, 370–377</td>
</tr>
<tr>
<td></td>
<td>research background, 363–366</td>
</tr>
<tr>
<td></td>
<td>Stackelberg game, 366–370</td>
</tr>
<tr>
<td>No-arbitrage price</td>
<td>electric utility risk management, static hedging, 503–507</td>
</tr>
<tr>
<td></td>
<td>storable commodity risk management, 135</td>
</tr>
<tr>
<td>Non-flexible agent, electric utility risk</td>
<td>Nonlinear loan schedule, capital-constrained newsvendor model, coordination</td>
</tr>
<tr>
<td></td>
<td>value through, 378–380</td>
</tr>
<tr>
<td>Nonperformance penalties, supply chain</td>
<td>risk management, 392, 397, 418</td>
</tr>
<tr>
<td>Normal business risk, supply chain risk</td>
<td>management, 5</td>
</tr>
<tr>
<td>Normal distribution, supplier portfolio</td>
<td>management, dynamic model, 437–442</td>
</tr>
<tr>
<td>NP-hard problems, ambiguity modeling</td>
<td>121</td>
</tr>
<tr>
<td>Open account financing, procurement</td>
<td>financing, 292–294</td>
</tr>
<tr>
<td>Operational Hedging</td>
<td>basic principles of, 15</td>
</tr>
<tr>
<td></td>
<td>capital structure, production/inventory management, 327–329</td>
</tr>
<tr>
<td></td>
<td>competency risk assessment, 19</td>
</tr>
<tr>
<td></td>
<td>contingent claims methodology, basic principles, 198–200</td>
</tr>
<tr>
<td></td>
<td>costs of, 48</td>
</tr>
<tr>
<td></td>
<td>electric utility risk management, 497, 510–511</td>
</tr>
<tr>
<td></td>
<td>exposure mitigation, 48</td>
</tr>
<tr>
<td></td>
<td>financial hedging and, 36–41</td>
</tr>
<tr>
<td></td>
<td>currency risk, 39–41</td>
</tr>
<tr>
<td></td>
<td>demand risk, 36–39</td>
</tr>
<tr>
<td></td>
<td>operational hedging vs., 41</td>
</tr>
<tr>
<td></td>
<td>financial option pricing model, 201–205</td>
</tr>
<tr>
<td></td>
<td>equations, 203–205</td>
</tr>
<tr>
<td></td>
<td>risk neutrality, 205</td>
</tr>
<tr>
<td></td>
<td>futures and, 39–41</td>
</tr>
<tr>
<td></td>
<td>guidelines for, 47–48</td>
</tr>
<tr>
<td></td>
<td>hazard identification, 17–19</td>
</tr>
<tr>
<td></td>
<td>process-based risk, 19–20</td>
</tr>
<tr>
<td></td>
<td>real options valuation, 205–214</td>
</tr>
<tr>
<td></td>
<td>aptness, 211–214</td>
</tr>
<tr>
<td></td>
<td>case study and applications, 207–211</td>
</tr>
<tr>
<td></td>
<td>discounting, 212</td>
</tr>
<tr>
<td></td>
<td>distribution, 212</td>
</tr>
<tr>
<td></td>
<td>future research perspectives, 214–215</td>
</tr>
<tr>
<td></td>
<td>volatility, 212–214</td>
</tr>
<tr>
<td></td>
<td>resource-based strategies, 20–21</td>
</tr>
<tr>
<td></td>
<td>risk mitigation and, 13–14, 18</td>
</tr>
<tr>
<td></td>
<td>storable commodity risk management, 143–150</td>
</tr>
<tr>
<td></td>
<td>strategies for, 33–36</td>
</tr>
<tr>
<td></td>
<td>supply chain disruptions: backup supply, 89–92</td>
</tr>
<tr>
<td></td>
<td>Optimal capital structure, production/inventory management, 352–353</td>
</tr>
<tr>
<td></td>
<td>Optimal contract: bankruptcy-prone newsvendor problem, supplier’s perspective, 279–283</td>
</tr>
<tr>
<td></td>
<td>beef supply chain model, procurement risk: spot price and product market</td>
</tr>
<tr>
<td></td>
<td>variability, 482–484</td>
</tr>
<tr>
<td></td>
<td>stochastic recourse model, 475–476</td>
</tr>
<tr>
<td></td>
<td>procurement financing model, supplier’s contract, 302–305</td>
</tr>
<tr>
<td></td>
<td>Optimal hedging quantity, storable commodity risk management, 136</td>
</tr>
<tr>
<td></td>
<td>Optimal order quantity: ambiguity modeling: future research issues, 121</td>
</tr>
</tbody>
</table>
single period newsvendor setting, 110–113
operational hedging and, 34–36 tailored operational hedging, 43–45 tail-pooling, 45 Portfolio management:
ambiguity modeling, probability distribution, 107 beef supply chain model, procurement risk, 469–470 computation methods, optimal sourcing portfolio, 479–482 spot price and product market variability, 482–484 Black, Scholes, and Merton option pricing model, 201–205 demand risk and:
Portfolio management: (Continued)
operational risk management and, 47
supply chain contract valuation, 223–226
maximum value determination, 229–231
supply chain disruptions, shareholder value, 55–58
Postponement strategy:
supplier portfolio management, 426–428
supply chain disruption, 67
Power exchanges, electric utility risk management, 496–497
Preferences, risk assessment and, 26–27
mean-variance preference, 27–28
Price risk:
base-stock optimality:
financial hedging, 460
inventory-dependent price, 457–458
inventory-independent price, 458
beef supply chain model, procurement risk, efficiency of pricing methods, 471–473
electric utility risk management, 496–498
electricity forward curve, 498–500
price zoning, 511
volume hedging, 501–503
integrated production and risk hedging, 158–159
multiperiod models:
continuous time settings, 179–192
multiple uncertainties, 178–179
single period models, production planning, 160–170
costly hedging, 173–175
forwards/futures contracts, 163–167
multiple uncertainties, 170–177
options model, 167–170
storable commodity risk management, 129, 150–152
supplier portfolio management, demand risk, static models, 433–436

Private information, supply chain risk management:
competing suppliers, 399–400
production costs, 413–414
supplier reliability, 414
Probability density function (PDF), supply chain financing, demand uncertainty, 254–256
Process-based risk:
beef supply chain model, 474
computational methods, 477–482
identification of, 19–20
Procurement risk management:
beef supply chain model:
future research issues, 490–492
literature review, 470–473
quality differences, C-cattle and S-cattle, 486–487
research background, 465–470
spot price and product market variability, 482–484
capital structure, production/inventory management, 330–333
integrated production and risk hedging, financial instruments, 159
inventory management, 251–253
storable commodity risk management, 133–134
operational and financial hedging, 143–150
supplier portfolio management:
demand risk, 442–443
PRM program, demand risk and, 426–428
supply chain management, competing buyers, 404–406
Product design, supply chain disruption, flexibility in, 66
Production process:
beef supply chain model, procurement risk:
computational methods, 478–482
decision concerning, 474–475
product and demand substitution, 488–490
timeline, 465–470
Index

electric utility risk management, static hedging, 505–507

Production risk:
capital structure:
- base-stock policies, cash and goods, 338–342
- bibliographical sources, 358–360
- concavity and monotonicity, 335
- coordination vs. decentralization, 351–352
dimensionality reduction, 334
discrete-time model parameters, 330–333
future research issues, 357–358
long-term decisions, 346–353
myopic optimum, 336–337
non-negative dividends, 356–357
numerical examples, 344–346
operations and finance, 327–329
optimal policy properties, 333–346
optimization of, 352–353
pecking order optimality, 337
short-term decisions, dividend, borrowing, and inventory, 347–351
standard newsvendor inventory model, no cash constraints, 342–343
wipeout bankruptcy, 354–355
continuous time setting, price and demand risk and, 179–192
inventory holding and backordering, 189–191
numerical analysis, 183–185
production capacity impact, 185–188
production cost impact, 188–189
risk-free interest rates, 191
spot price volatility, 191–192
identification of, 20
multi-period models, 177–192
- multiple uncertainties, production planning under, 179
- price uncertainty, production planning under, 178–179
private information concerning, 413–414

single period models:
- costly hedging, price and basis risks, 173–175
- multiple uncertainties, 170–177
- price, basis and yield risks, 175–177
- price and basis risks, 170–173
- price uncertainty, 160–170
- forwards/futures contracts, 163–167
- options model, 167–170
- supply chain risk management, 540

Product life cycle, operational risk management and, 47
Product Resiliency program (Cisco), 528
Profit variability risk, 14–15
- beef supply chain model, procurement risk:
 - quality differences, C-cattle and S-cattle, 486–487
 - spot price and product market variability, 483–484
 - utilization cost parameter, 487–488
- capital structure, production/inventory management, 337–338
- numerical examples, 345–346
- price risk, single period models, production planning, options-based hedging, 167–170
- single contract financial hedging:
 - buyer’s utility function, 137–139
 - optimal policy per period, 141–142
- Progressive demand revelation, supplier portfolio management, dynamic model, 436–442
- Project risk, tailored operational hedging, 45–47
- Pure diversification, natural hedging and, 35
- Pure hedging, single period models, production planning, multiple uncertainties, price and basis risks, 172–173
- Pure speculation, single period models, production planning, multiple uncertainties, price and basis risks, 172–173
Qualitative risk assessment:
 practice, 23–24
 theory, 22–23
Quality controls:
 beef supply chain model, procurement
 risk, quality differences, C-cattle and S-cattle, 486–487
 supply chain risk management:
 asymmetric information effects, 417–418
 competing suppliers, 399–400
Quality measures, score-based learning
 methods, 547–548
Quantitative analysis:
 sourcing trade-offs, 520–521
 supply chain risk management, 421
 Bayesian learning and, 545–550
 performance metrics and design
 criteria, 520–521
 risk and goal prioritization, 526
Quantity-flexibility supply chain
 contracts, 220
Quick-response theory, supplier portfolio
 management, dynamic
 model, 437–442
Radon-Nikodym derivative, electric
 utility risk management,
 static hedging, 504–507
Random yield, tailored operational
 hedging, 46–47
Rating agencies, supply chain disruptions,
 share price volatility and,
 59–60
Rationing, demand management, supply
 chain risk, 94–95
Real options valuation (ROV):
 basic principles, 198–200
 Black, Scholes, and Merton option
 pricing model, 200–205
 operations applications, 205–214
 aptness, 211–214
 case study and applications,
 207–211
 discounting, 212
 distribution, 212
 volatility, 212–214
Redundancy:
 flexible networks and, 36
 operational hedging and, 34–35
 tailored operational hedging, 43–47
 tailored redundancy, 45–47
Relationship management, supply chain
 risk management and,
 522–523
Resiliency, supply chain risk management,
 6
 recovery strategies and, 85
Resource-based risk assessment, 20–21
Response process, supply chain risk
 management, 7
 backup supply and, 91–92
Retailers:
 bankruptcy-prone newsvendor
 problem, 257–262
 bank financing, 274–275
 bank vs. supplier financing, 278–279
 optimal order quantity, fixed
 wholesale price, 262–264
 profitability under supplier
 financing, 284–285
 profit model, 256–257
 Stackelberg game, supplier-retailer
 interaction, 268–272
 supplier financing, 275–278, 283–284
 wealth and optimal order quantity,
 266–268
 procurement budget constraints:
 cooperative retailer, credit contract, 306
 noncooperative retailer, credit
 contract, 306–307
 procurement contracts, external
 financing, 307–310
 procurement financing equilibrium,
 optimal ordering strategy,
 299–302
Return on investment (ROI),
 capital-constrained
 newsvendor model, bank
 financing, 373–377
Risk:
 ambiguity modeling and, 103–105
defined, 14
financial vs. operational risk, 14
Risk assessment:
 mean-variance preference, 27–28
operational hedging and, 13–14
preferences and utility functions, 26–27
qualitative risk assessment:
 practice, 23–24
theory, 22–23
quantitative risk assessment, metrics, 24–25
risk management using, 17
supply chain disruption management and, 68, 540
strategies for, 99–100
supply chain risk management, 6
Risk aversion:
 ambiguity modeling, single period newsvendor setting, 109–113
price risk, single period models, production planning, 160–170
forwards/futures contracts, 163–167
options model, 163–167
procurement financing, 293–294
storable commodity risk management, 133
operational and financial hedging, 145–146
Risk categorization framework, supply chain risk management, 543–545
Risk discovery, 29–30
supply chain risk management, 392, 396, 417
Risk events, defined, 543–545
Risk factors:
 defined, 543–545
global supply chain case study, 554–557
Risk free interest rates:
 bankruptcy-prone newsvendor problem, supplier rates vs., 283
 production risk, continuous time setting, 191
Risk identification, supply chain risk management, 5–6, 525–526
profiling strategies, 83–84
Riskless asset:
 electric utility risk management, liquidity risk, 508–510
interest rate, supply chain contract valuation, 239–240
Risk management:
 basic principles, 15–17
continuous risk management, 33
process and operations strategy, 17–19
supply chain disruption:
 cross-functional expertise, 68
 process improvement, 68
tactical decisions and crisis management, 28–30
Risk metrics, basic principles, 24–25
Risk mitigation planning:
 global supply chain case study, 552–557, 560
operational hedging and, 13–14
periodic updating and continuous risk management, 33
risk-return trade-offs, 31–33
strategic risk mitigation, 16–17, 30–33
supply chain disruption, 6
 Cisco Sichuan earthquake case study, 531–532
strategies for, 8–10, 64–72
supply chain disruption management and, 540
tailored operational hedging, 44–45
value-maximizing strategies, 30–31
Risk neutrality:
 ambiguity modeling, single period newsvendor setting, 109–113
bankruptcy-prone newsvendor problem, bank’s bankruptcy costs and retailer’s debt capacity, 257–262
Black, Scholes, and Merton option pricing model, 205
electric utility risk management:
 electricity forward curve, 500
 static hedging, 503–507
Risk neutrality: (Continued)
production risk, continuous time setting, 182–183
risk mitigation and, 30–31
storable commodity risk management, 132–133
operational and financial hedging, 144–146
supplier portfolio management, demand risk:
dynamic model, 438–442
static models, 431–436
values, 26–27
Risk preference, Black, Scholes, and Merton option pricing model, 203–205
Risk premium, single period models, production planning, multiple uncertainties, price and basis risks, 173
Risk preparation, basic principles, 28–29
Risk recovery, 29–30
supply chain risk management, 85
Risk-return trade-offs, risk mitigation and, 31–33
Risk-sensitive values, 26–27
Risk-sharing, operational hedging and, 34, 36
Risk symptoms, defined, 543–545
Robust optimization, supply chain risk management, 6
ambiguity modeling, 114–120
Root cause risk analysis:
global supply chain case study, 557–560
operational hedging and, 34, 36
Rouge trading, electric utility risk management, 510–511
Sarbanes-Oxley Act, 52–53
Scanning, supply chain risk management, 7
Score-based learning methods, supply chain risk management, 547–548
Self-financing portfolios:
electric utility risk management, liquidity risk, 510
supply chain contract valuation:
arbitrage and, 225–226
maximum value determination, 230–231
Sensitivity analysis, bankruptcy-prone newsvendor problem, 265–266
Service risk:
identification of, 20
storable commodity risk management, operational and financial hedging, 144–146
Severity of risk, supply chain risk management, 83–84
Shareholder value, supply chain disruptions and, 55–58
ambiguity modeling, 114–120
Share price volatility: estimation methodology, 75
supply chain disruptions, 58–60
Shortage risk:
cost-benefit analysis of, 30–31
risk-return trade-offs, 31–33
Short straddle position, price risk, single period models, production planning, options-based hedging, 168–170
Short-term decisions, capital structure, production/inventory management, 347–351
Short-time financing, inventory management, 251–253
Single contract financial hedging, optimal policy, 137–142
buyer’s utility function, 137–139
periodic optimization, 139–142
Single period models:
capital structure, production/inventory management, 345–346
financial instruments, integrated production and risk hedging, 159–177
multiple uncertainties, 170–177
costly hedging, price and basis risks, 173–175
price, basis, and yield risks, 175–177
price and basis risks, 170–173
price uncertainty, 160–170
forwards/futures contracts, 163–167
options model, 167–170
newsyendor model:
ambiguity modeling:
 basic principles, 103–105
 future research issues, 120–122
 risk neutral to risk averse newsyendor, 109–113
 procurement financing, 292–294
 storable commodity risk management, 132–133
supply chain contracts, 221
Single sourcing strategies:
storable commodity risk management,
 operational and financial hedging, 144–150
supply chain disruption and, 64
Sourcing risk:
beef supply chain model, procurement risk, computation methods, optimal sourcing portfolio, 479–482
identification of, 20
storable commodity risk management, 128–129, 133
 operational and financial hedging, 144–150
supply chain disruption, sourcing flexibility for reduction of, 66
supply chain disruption management and, 68
supply chain risk management, quantitative analysis, 520–521
Speculation, price risk, single period models, production planning, forwards/futures contracts, 167
Spillover risk, supplier-development strategy, 98
Spot market cattle, beef supply chain model, procurement risk:
 computational methods, 477–482
 contract market transaction costs, 484–486
 processing decision, 474
 procurement decisions, 473–474
 quality differences, 486–487
 spot price and product market variability, 482–484
 stochastic recourse model, 475–476
 utilization cost parameter, 487–488
Spot markets and prices:
beef supply chain model, procurement risk:
 competitive spot markets, 472–473
 computational methods, 477–482
 contract and spot purchasing, 469–470
 literature review, 470–473
 procurement decisions, 473–474
 product market variability, 482–484
 electric utility risk management, 496–497
 electricity forward curve, 498–500
 static hedging, 503–507
 financial hedge portfolio optimization, 142–143
 integrated production and risk hedging:
 continuous time setting, price and demand risk and, 180–192
 capacity planning, 185–188
 costs, 188–189
 inventory holding and backordering, 189–190
 risk-free interest rates, 191
 volatility in, 191–192
 financial instruments, 158–159
 multiperiod models, 178–179
 single period models, forwards/futures contracts, 163–167
 single contract financial hedging:
 buyer’s utility function, 137–139
 optimal policy per period, 140–142
 storable commodity risk management, 129–135
 operational and financial hedging, 148–150
Stackelberg game:
 bankruptcy-prone newsvendor problem:
 optimal trade credit contract parameters, 280–283
Stackelberg game: (Continued)
supplier-retailer interaction, 268–272
trade credit model, 274
capital-constrained newsvendor model, 366–370
inventory financing, 251–253
price negotiation process, 221
procurement financing model, 295–297
Stackelberg-Nash equilibrium, procurement financing model, wholesale contract, 298–299
Standard business process, supply chain risk management, 544–545
Static models:
electric utility risk management, 503–507
supplier portfolio management, demand risk, 430–436
supply chain risk management and, 516
Statistical methods, stock price performance, estimation methodology, 73–74
Stochastic programming framework:
ambiguity modeling, supply chain inventory management, 115–120
base stock optimality model, price dynamics, 458–459
production risk, continuous time setting, 180–183
supply chain contract valuation, 222–223
random variables, 224–226
Stock price performance:
Black, Scholes, and Merton option pricing model, 201–205
supply chain contract valuation,
volatility in, 238–239
supply chain disruption analysis, estimation methodology, 73–75
Storable commodity risk management:
base stock optimality opportunity costs, 449–450
model parameters, 450–452
overview, 448–449
warehouse problem, 452–460
financial hedges portfolio, optimal policy, 142–143
literature review, 132–133
management behavior, 153–154
model applications and results, 150–152
operational and financial hedges, 143–150
mean, variance and utility impacts, 147–150
service-level impact, 144–146
problem setting, 129–132
notation and assumptions, 133–136
utility function, 136–137
research background, 127–129
single contract financial hedging, optimal policy, 137–142
buyer’s utility function, 137–139
periodic optimization, 139–142
Strategic risk:
identification, 21
mitigation, 16–17, 30–33
Strike price, storable commodity risk management, 135
Subjective expected utility (SEU) theory, ambiguity modeling, 105–107
Subjective risk map, 22–23
Substitution effect, price risk, single period models, production planning, forwards/futures contracts, 164–167
Suppliers:
availability risks:
storable commodity risk management, 129
supplier reliability, private information, 414
bankruptcy-prone newsvendor problem:
optimal contract, 279–283
profitability with retailer financing, 283–284
retailer profitability under, 284–285
retailer’s contract, 275–278
Stackelberg game, supplier-retailer interaction, 268–272
beef supply chain model, procurement risk, 467–470
capacity losses, supply chain risk management, 390–391
eyearly payment discount, inventory financing, 252–253
investment, supply chain disruption reduction, 392
optimal contracts:
 bankruptcy-prone newsvendor problem, 279–283
 procurement financing, 302–305, 321–324
portfolio management, demand risk and:
 dynamic model, progressive demand revelation, 436–442
 future research issues, 442–443
 literature review, 428–430
 overview, 425–428
 static model, 430–436
qualification screening, supply chain risk management, 392, 396, 417
supply chain risk management:
 competing suppliers, 393, 396, 398–400, 406–407, 414–415
 incentive misalignment with buyers, 393, 398
 risk mitigation, supply phase, 531
supply chain risk management and relationships with, 522–523
Supply chain contracts:
 buyer’s design of, 404–406
financial valuation:
 assumptions, 228
 demand volatility effect, 237–238
dual formulation, 231–234
exercise price effect, 236
experimental study, 234–235
financial markets, arbitrage, and martingales, 223–226
future research issues, 243
holding cost effect, 241–242
model parameters, 226–231
notation, 227–228
number of options effect, 236
purchase effect, 236–237
research overview, 219–223
risk asset interest rate, 239–240
sales price effect, 240–241
stock-out cost effect, 242–243
stock price volatility, 238–239
Supply chain disruptions:
 ambiguity modeling, 114–120
 buyer impact of, 401–404
case studies, 69–72
corporate performance and:
 mitigation strategies, 64–72
 profitability effects, 61–63
 research background, 51–53
 sample, performance metrics, and methodology, 53–55
 shareholder value effects, 55–58
 share price volatility, 58–60
decision support systems, 99
drivers of, 63–64
financial impact, estimation methodology, 73–75
future research issues, 98–100
interruption insurance, 100
investment in suppliers and reduction of, 392, 396
operational strategies:
 backup supply, 89–92
demand management, 92–96
detection, 84
diversification, 86–89
isolation, 84–85
recovery, 85
research overview, 79–82
risk profile, 83–84
stockpile inventory, 82–83
supply chain strengthening, 96–98
opportunity in, 532–533
recent examples, 538–539
risk evaluation strategies, 99–100
Supply Chain Operations Reference Model (SCOR), 539–540, 543–544
development for supply chain risk management, 517–518
Supply Chain Resiliency program (Cisco), 528
Supply Chain Risk Leadership Council (SCRLC), 523–524
Supply chain risk management:
action-based framework, 4–7
evaluation stage, 7
planning stage, 4–7
beef supply chain model, procurement risk, literature review, 471–473
capabilities development, 518–523
architect function, 521–522
information collection, communication and response, 518–519
performance and design metrics, 520–523
relationship structure and management, 522–523
sourcing trade-off quantification, 520–521
uncertainty impact assessment, 519–520
Cisco-Sichuan earthquake case study, 527–533
action-based strategies, 529–530
Business Continuity Planning program, 527–528
business partnerships, 528–529
corporate culture for risk management, 527
impact quantification, 530–531
manufacturing base risk mitigation, 532
monitoring and crisis management program, 528
decentralized operations:
asymmetric information, 394, 396, 413–419
auction mechanisms, 415
backup supply sources, internal/external, 392, 397
backup supply sources, supplier/buyer, 416
competing buyers, 393–394, 396, 402–406, 411–413
competing manufacturers, 408
competing suppliers, 393, 396, 398–400, 406–407, 414–415
competition vs. diversification, 401–406
Cournot competition, 409–410
critical part shortage/loss of supplier capacity, 390–391
defective parts, finished goods inventory loss, 391
disruption odds reduction, investment in, 392, 396
diversification strategies, 400–401, 416
equilibria multiplicity, 407
future research issues, 419–421
incentive misalignment, suppliers and buyers, 393, 398
literature taxonomies, 394–397
market-entry competition, 410
multisourcing strategies, 392, 397
nondelivery penalties, 418
nonperformance penalties/contingency payments, 392, 397
production costs, private information about, 413–414
quality controls, 417–418
research background, 389–390
supplier misrepresentation incentives, 413–416
supplier qualification screening/risk discovery, 392, 396, 417
supplier subsidies, competing buyers, 411–413
supply chain structure, 410–411
supply cost inflation, 391
supply reliability, private information about, 414
take or leave it offers, 414
trading mechanisms, 415–416
uncertainty characteristics, 397
definition, 516–517, 539
electric utility risk management, time and seasonal variations, 496
future research issues, 534–535
identification of, 20
international standard for, importance of, 534
mismatches, 516
outsourcing complications, 515–516
process approach to, 523–527
environment and objectives definition, 525
monitoring risk environment, 527
program establishment and resource applications, 525
quantification and prioritization of risks and goals, 526
risk identification, 525–256
risk treatment programs, 526
research opportunities in, 10–12
static metrics, 516
supply change finance, 10
tailored operational hedging, redundancy and multisourcing, 45–47
vulnerability map, 5
Supply-demand mismatch risk, storable commodity risk management, 143–150
Supply pooling, operational hedging and, 35
Swaps, currency risk and, 39–41
Switching strategies, demand management, supply chain risk, 93

Tactical risk decisions, risk management using, 17
Tailored operational hedging: base demand, tail-pooling, and chaining, 45
example, 42–43
redundancy and dynamic pooling with allocation flexibility, 43–45
tailored redundancy and multisourcing, 45–47
Tail-pooling, tailored operational hedging, 45
Tax benefits, capital structure, production/inventory management, short-term decisions, 347–351

Technical risk, identification of, 20
Technology investment:
beef supply chain model, 492
supply chain disruption reduction and, 67
Trade credit contract financing:
bank credit vs., 285
bankruptcy-prone supply chains, 272–285
eyearly payment discount model, 273–274
retailer’s perspective, supplier or bank financing, 274–279
supplier financing, 283–285
supplier’s perspective, optimal contract parameters, 279–283
inventory management, 252–253
model setting, common notation and assumptions, 253–256
supply risk management, nonperformance penalties, contingent payments, 392, 397, 418
Trading mechanisms, supply chain risk management, 415–416
Transaction costs, beef supply chain model, procurement risk, contract markets, 484–486
Transfer of risk, operational hedging and, 34, 36
Two-dimensional Itô process, production risk, continuous time setting, 181–183
Two-echelon ambiguity model: procurement contracts, 289–294, 315–319
supply chain management, 122

Uncertainty:
beef supply chain model, procurement risk, market uncertainty, 491–492
supply chain risk management, 397
impact assessment, 519–520
Unconstrained newsvendor model: retailer’s bank financing, 274–275
supplier financing, 277–278
Utility functions:
financial hedge portfolio optimization, 142–143
production risk, single period models:
multiple uncertainties, price and basis risks, 174–175
price uncertainty, forwards/futures contracts, 166–167
risk assessment and, 26–27
single contract financial hedging:
buyer’s utility function, 137–139
operational and financial hedging, 147–150
optimal policy per period, 141–142
storable commodity risk management, 136–137

Valuation mechanisms. See also Financial valuation; Real options valuation investment applications, 198–200
Value-at-Risk (VaR):
Conditional Value-at-Risk, 104–105
electric utility risk management, price risk, 497–498
quantitative risk assessment, 25
Value chain, hazard identification in, 19–20
Value-maximizing risk mitigation, 30–31
Value of coordination, capital structure, production/inventory management, 346
Variance:
quantitative risk assessment, 24–25
single contract financial hedging, operational and financial hedging, 147–150
tailored operational hedging and, 42–43
Visibility investments, supply chain disruption and, 66–67
Volatility:
demand, supply chain contract valuation, 237–238
production risk, continuous time setting, price and demand, 191–192

real options valuation, B-S &M option pricing model, 212–214
shared price volatility:
estimation methodology, 75
supply chain distribution, 58–60
stock prices, supply chain contract valuation, 238–239
Volume risk:
electric utility risk management, 496–497, 501–503
storable commodity risk management, consumption volume, 129

Wal-Mart case study, supply chain disruption, 69–70
Warehouse problem, base stock optimality opportunity costs:
computation, 458–459
financial hedging, 460
inventory-dependent pricing, 457–458
inventory-independent pricing, 458
inventory subdivisions, 455–457
model parameters, 450–452
motivation example, 449–450
mutually exclusive actions, 455
optimality, 452–457
optimal nontrivial capacity underutilization, 458
overview, 447–449
stochastic price dynamics, 459–460
Weather derivatives, demand risk, 38–39
Wholesale pricing:
bankruptcy-prone supply chains:
bank’s bankruptcy costs and retailer’s debt capacity, 257–262
decision sequence, 256
newsvendor problem, 256–266
retailer’s optimal order quantity, 262–264
retailer’s profit model, 256–257
selling to, 266–272
optimal order quantity, fixed retailer’s wealth, 266–268
Stackelberg game, between supplier and retailer, 268–272
sensitivity analysis, 265–266
supplier vs. bank financing, 278–279
procurement financing, 298–299
credit contract, nonoperative supply chain, 306–307
equilibrium computations, 311–315
external financing, 308–310
supplier’s optimal contract, 303–305
Wiener processes:
 Black, Scholes, and Merton option pricing model, 201–205
electric utility risk management, electricity forward curve, 500
production risk, continuous time setting, 180–183
Wipeout bankruptcy, capital structure, production/inventory management, 354–355
Withdraw-and-sell (WS) action, base stock optimality model:
 inventory-dependent price, 457
 inventory-independent price, 458
 model parameters, 449–452
 opportunity cost rotation, 455–457
 value function, 453–460
Yield risks, production planning:
 multiperiod models, 179
 single period models, 175–177
Zero beta asset, real options valuation, B-S &M option pricing model, discounting methods, 212
Zero bid-ask spread, single contract financial hedging:
 buyer’s utility function, 137–139
 optimal policy per period, 141–142
Zero risk premium assumption, storable commodity risk management, 135