Index

Aalen-Johansen method, 263, 268
accelerated failure time model, 334
accuracy of diagnostic tests see
diagnostic test accuracy
adverse effects monitoring, 57–8, 89–90
AGREE protocol, 32
alleles, 296–7
dependence between, 298–306
Hardy-Weinberg
equilibrium, 299–303
linkage disequilibrium, 303–6
alternative hypothesis, 162–3
alveolar bone loss, 360–362
see also subantimicrobial dose
doxycycline (SDD) study
analysis of variance (ANOVA), 170–2
ANCOVA, 92
measurement error in, 289
One-Way ANOVA, 170–2
repeated measures ANOVA, 224–5
Two-Way ANOVA, 172
animal research, 14
ethical issues, 55
area under the ROC curve (AUC), 208, 212
association
correlation, 186–8
genetic tests for, 307–9
scatterplot, 184–5
see also regression
attrition bias, 37
authorship issues, 57, 77
autosomes, 296
bar chart, 152
Bayes’ factor, 325
Bayes’ Theorem, 317–23
general rule, 320–3
Bayesian approach, 315–16, 328–36
posterior distribution, 323–4
hypothesis testing, 324–6
Markov chain Monte Carlo
sampling, 329–30
multiparameter models, 328–9
prior distributions, 326–8
bench research, 14
Berkson measurement error, 288
linear regression with, 289
bias, 35, 36–7, 108–10, 282
attrition bias, 37
confounding bias, 109
information bias, 109–10
informative cluster size bias, 253–4
measurement bias, 36, 37, 109–10
recall bias, 110
performance bias, 36, 37
parameter bias, 242, 246, 247, 248
selection bias, 35, 36, 109
binary test accuracy, 206–8, 213–14
paired design, 213–14
predictive values, 207–8
sensitivity, 206–7, 281
specificity, 207, 281
Statistical and Methodological Aspects of Oral Health Research edited by E. Lesaffre, J. Feine, B. Leroux, D. Declerck
© 2009 John Wiley & Sons, Ltd
binary test accuracy, (continued)
 unpaired design, 215
binomial distribution, 154
biological plausibility, 14, 20–1
biostatistician, 63–4
blinding, 72–3, 88–9
 double-blinded studies, 72, 89, 365
 open-label studies, 72
 single-blinded studies, 72,
 88–9
 triple-blinded studies, 72
bone mineral density loss, 360–2
bootstrap, 235–7, 264–5
 clustered data, 235–7
box(-whisker) plot, 153
calibration, 133
 measurement of, 133–4
 regression, 291
California Oral Health Needs
 Assessment of Children
 (COHNAC), 244, 251–2
caries
 definition, 280
 fluoride varnish early childhood
 caries prevention
 trial, 244, 250–1
measurement problems, 279
prevalence, 280, 281–3
risk assessment model, 330–3,
 345–6
 inter-observer bias and
 variability, 349–50
see also Signal-Tandmobiel® study;
Smile for Life (SFL)
study
Casa Pia children’s amalgam trial, 52
case definition, 107
case-control studies, 15, 100–1
 genetic, 306–10
 study design issues, 107–8
case-series, 14
causality, 17–18
cause-specific cumulative
 incidence, 267–9
causes of failure, 263
censored events, 202
 interval censored, 262–3
 left censored, 261–2
 right censored, 260–1
Center for Devices and Radiological
 Health (CDRH), 55
Central Limit Theorem
 (CLT), 159–60, 196
central tendency measures, 148–50
 comparison of, 150
 mean, 148–9, 150
 median, 149, 150
chi-square test, 178–6, 180
 for Hardy-Weinberg
 equilibrium, 300–1
clinical criteria, 132
 safe use of, 132–4
clinical guidelines, 32
clinical research see oral health (OH)
 research; research
clinical research monitor, 65
cluster sampling, 158–9
cluster-randomized study design, 86
clustered data, 221–4
analysis approaches, 224–37
 repeated measures
 ANOVA, 224–5
 summary statistic approach, 224
 bootstrap resampling, 235–7
 generalized linear models, 225–35
 Generalized Estimating Equation
 (GEE) approach within-
 and between-cluster
covariate components,
 254–5, 368–9
 random effects approach, 226–31
ininformative/nonignorable cluster
 size, 253–5
co-investigators, 62
 colleagues as, 63
Cochran-Armitage test statistic, 308,
 310
Cochrane Collaboration Handbook, 32
coding, 124
cohort studies, 15, 100
study design issues, 106–7
communication of research data, 41
see also reporting of results
competing risks, 263
complete case (CC) analysis, 247
computer assisted qualitative data analysis software (CAQDAS), 125–6
conditional approach, 263–4
conditional maximum likelihood (CML), 254
confounding bias, 109
CONSORT (Consolidated Standards of Reporting Trials) guidelines, 5, 40–1
constructivism, 116
continuous scales, 148
Cook’s distance, 200
correlation, 186–8
interpretation of zero correlation, 186–7
intra-cluster correlation (ICC), 222–3
multiple correlation, 194
partial correlation, 194–5
Pearson’s correlation coefficient, 186
calculation of, 187
significance test, testing the significance of a correlation coefficient, 188
variables with range restrictions, 187–8
cost estimation, 52–3, 66
covariate adjustment, 92
Cox regression, 202
failure time analysis, 269–70, 272–4
Cox-Aalen model, 271–3
credibility, 126–8
criteria see clinical criteria
critical appraisal checklists, 39
critical theory, 116
cross-sectional studies, 100
study design issues, 101–6
response rates, 104–5
samples and populations, 101–2
sampling frames, 102–4
stratified samples, 105–6
target populations, 102
crossover study design, 84
cumulative incidence function, 267
Data and Safety Monitoring Board (DSMB), 58
data management, 73–5, 89–90
data analysis
coding, 124
computer assisted qualitative data analysis software (CAQDAS), 125–6
data display, 124–5, 152–3
qualitative research, 124–6
see also statistical analysis
data collection, 73, 88, 369–370
qualitative research, 120–3
data entry, 74, 134–5
data management software, 75, 370
data security, 73–4
monitoring, 89–90
multicentre trials, 76
data mining, 180
data quality see quality issues
databases, 49–50, 73–74
devices, 20–1
Class I devices, 55
Class II devices, 56
Class III devices, 56
regulation, 55–6
DFBETA, 200
diagnostic test accuracy, 205–6
binary tests, 206–8, 213–14
predictive values, 207–8
sensitivity, 206–7, 281
specificity, 207, 281
comparison of accuracy, 212–14
diagnostic test accuracy, (continued) study design issues, 212–13 continuous tests, 214 correlated diagnostic test results, 215–16 incomplete disease ascertainment, 216–17 nonbinary tests, 208–12 area under the ROC curve (AUC), 208, 212 ROC curve, 208, 210–12 discrete scales, 148 discriminant validity, 139 disease specific measures, 139 distribution see probability documentation, multicentre trials, 76 double-blinded studies, 72, 89, 365 dropouts, 241, 242 dropout rates, 56 see also missing data ecological fallacy, 99 ecological studies, 99 effect size, 50–1 emergence timing and sequence of permanent teeth study, 333–5, 346–9 endpoints primary, 90 secondary, 90 surrogate, 18–20 enrollment, randomized controlled trials, 87, 365 see also recruitment epidemiological studies, 15, 97–110 bias, 108–10 study design issues, 101–8 response rates, 104–5 samples and populations, 101–2 sampling frames, 102–4 stratified samples, 105–6 target populations, 102 study types, 99–101 case-control studies, 100–1 cohort studies, 100 cross-sectional studies, 100 ecological studies, 99 longitudinal studies, 100 split-mouth studies, 4, 85 see also Signal-Tandmobiel® study; Smile for Life (SFL) study epidemiology, 97 see also epidemiological studies equivalence test, 179, 369 error in hypothesis testing, 160, 161–2 standard (SE), 160, 161–2 type I, 166 type II, 166 variance, 190–1 see also measurement error error-bar plot, 152–3 ethical issues, 55, 66–7 European Health for All Database, 49 event history, 264 event probabilities, 265–9 cause-specific cumulative incidence, 267–9 survival function, 265–7 evidence, 28 evidence-based oral health care (EBOH), 13, 28–9 definitions, 28 evidence grading, 14 high-level evidence, 15–16 low-level evidence, 14–15 expert opinion, 20–1 external validity, 39 failure probabilities, 265 failure time analysis estimating event probabilities, 265–9 cause-specific cumulative incidence, 267–9 survival function, 265–7 regression models, 269–74 Cox regression, 269–74, 272–4 frailty models, 273–4
time-varying effects, 270–3

see also survival analysis
false positive fraction (FPF), 207, 212, 213

Fisher’s exact test, 301–2
fluorides, 17
fluoride varnish early childhood caries prevention trial, 244, 250–1
focus group interviews, 123
follow-up, 89
Food and Drug Administration (FDA), U.S., 55
frailty, 264
frailty models, 273–4
Framingham Heart Study, 16–17
funding
obtaining, 66
sources, 54
Gantt chart, 67
Gaussian distribution, 156–8
Generalized Estimating Equation (GEE) approach within- and between-cluster covariate components, 254–5, 368–369
analysis of binary responses, 233–4
analysis of continuous responses, 232–3
analysis of ordinal responses, 368
clustered binary responses, 233–4
clustered continuous responses, 232–3
weighted GEE (WGEE) methods, 249
generalized linear model (GLM), 201
clustered data, 225–35
Generalized Estimating Equation (GEE) approach within- and between-cluster covariate components, 254–5, 368–369
generalized linear mixed models (GLMMs), 254–5, 368
random effects approach, 226–31
generic measures, 138–9
genetic case-control studies, 306–10
population structure, 309–10
sample size, 309
tests for association, 307–9
genetic data, 296–7
genetic factors, 295–6, 310–11
dependent between alleles, 298–306
Hardy-Weinberg equilibrium, 299–303
linkage disequilibrium, 303–6
see also genetic case-control studies
 genomic control, 310
genotype, 297
genotypic test, 307–8
 gingivitis, 17
 gold standard, 205, 280
 imperfect, 216
 graphical display of data, 152–3
 Groningen Activity Restriction Scale, 139
Hardy-Weinberg equilibrium (HWE), 299–303
chi-square test for, 300–1
Fisher’s exact test for, 301–2
interpreting the results of tests for, 302–3
hazard function, 202
hazard rate, 260
hazard regression, 264
Health in Australia survey, 49
health-related quality of life see quality of life
healthy worker effect, 253
heterozygosity, 297
histogram, 152
HIV infection, 223–4, 227–37
homozygosity, 297
Hopkins Symptom Checklist, 139
hospital-based recruitment, 70–1
hot decking, 247–8

hypothesis
 alternative, 162–3
 null, 162–3
 testing, 163–4, 316
 Bayesian, 324–6
 errors in, 166

Implicit Theory of Change, 140
imputation
 multiple, 248–9
 single, 247–8
incidence, 97, 98
increment, 98
independent responses, assumption of, 196
independent variables, 186
inference see statistical inference
inferiority trials, 90–1
influential observations, 200
information bias, 109–10
informative/non-ignorable cluster size, 253–5
informed consent, 55
 randomized controlled trials, 87
Institutional Review Board (IRB), 55
 obtaining approval, 66–7
intention to treat (ITT)
 analysis, 38–9, 91–2
inter-quartile range (IQR), 152
interactive voice response systems (IVRS), 71
intergenerational epidemiologic cohort study of adult periodontitis (Multi-Pied), 244–5, 253–5
internal validity, 35–9
interval censored data, 262–3
interviewing, 122–3
 focus group interviews, 123
intra-cluster correlation (ICC), 222–3
item impact, 141
item redundancy, 138
Kaplan-Meier method, 261, 264–5
Kappa coefficient, 284
 inter rater reliability, 284
lactase dehydrogenase (LDH), 213–14
last observation carried forward (LOCF), 95, 248
Law of Total Probability, 319
least-squares (LS) estimates, 189–90
left censored data, 261–2
likelihood, 177–9
 maximum likelihood estimate (MLE), 178–9, 249, 322
 missing data analysis, 249
 conditional maximum likelihood (CML), 254
Linear Analogue Self-Assessment of quality of life, 139
link function, 201
linkage, 298
linkage disequilibrium, 303–6
 causes of, 304–6
 measures of, 303–4
locus, 296
log-linear model, 201
logistic regression, 201, 286–7
longitudinal studies, 100
 study design issues, 106–7
Management of a Research Study, 61–2
 data, 73–5, 370
 multicentre trials, 76–7, 369
 randomization and blinding, 71–3, 365, 367
 recruitment, 68–70, 365
 study initiation, 66–8
see also team building
Mann-Whitney statistic, 211
manual of procedures (MOP), 57, 86, 369
marginal approach, 263–4
Markov chain Monte Carlo (MCMC) techniques, 249, 329–33
risk of caries experience modeling, 330–3
masking see blinding
matrix method, 286
maximum likelihood estimate (MLE), 178–9, 249, 322
conditional maximum likelihood (CML), 254
mean, 148–9, 150
mean-variance relationship, 199
mean value single imputation, 247
measurement bias, 36, 37, 109–10
recall bias, 110
measurement error, 281, 287, 289–91
approximate methods for handling, 291–3
regression calibration, 291
simulation and extrapolation (SIMEX), 292–3
Berkson measurement error, 288
in continuous variables, 287–91
variance, 287–8
see also error
measurement model, 280, 281
combining with main model, 285
measurement problems, 279–80
see also measurement error; misclassification
median, 149, 150
Mendel’s laws, 297
meta-analysis, 29–30, 32–4
misclassification, 281–7
estimation of probabilities, 283–4
matrix method, 286
prevalence estimation, 281–3
missing data, 94–5, 135, 241
analytic approaches, 243–4, 247–53
complete case (CC) analysis, 247
examples, 250–2
hot decking, 247–8
ignorable, 245
imputation, 247–9
intermittent missing, 242
likelihood-based models, 249
mean value single imputation, 247
mechanism, 245
missing not at random (MNAR) models, 250
non-monotone missing, 242
power, effect on, 242
sequential regression multivariate imputation (SRMI), 249
single imputation, 247
weighted models, 249
arbitrary missing, 242
importance of, 242–3
informative/nonignorable cluster size and, 253–5
missing at random (MAR), 244, 246
missing completely at random (MCAR), 245–6
missing not at random (MNAR), 246–7
monotone missing, 242
prevention, 243
monitoring
adverse effects, 57–8, 89–90
clinical research monitor, 65
Monte Carlo sampling, 329
Markov chain Monte Carlo (MCMC) techniques, 329–33
multicentre trials, 76–7, 93, 365
multiparameter models, 328–9
multiple correlation coefficient, 194
multiple imputation, 248–9
Multi-Pied see intergenerational epidemiologic cohort study of adult periodontitis,
multiple regression see regression
multiple testing issues, 93–4
naïve estimator, 282
national surveys, 100
negative predictive value (NPV), 207–8, 319
Neyman-Pearson procedure, 164
NHANES (National Health and Nutrition Examination Survey), U.S., 49, 245
NHANES III, 167–8
nominal scales, 148
non-inferiority test, 179–80
non-informative (NI) prior, 326
non-response, 104–5
nonlinear regression, 200–1
normal (Gaussian) distribution, 156–8
assumption of, 196
residual diagnostics, 197
null hypothesis, 162–3
numerical scales, 148
observation, 120–2
odds-ratios, 201
open-label studies, 72
Oral Health Impact Profile (OHIP), 135, 137–8, 139, 142
OHIP-14, 137–8, 141–2
OHIP-EDENT, 137–8, 141–2
oral health (OH) research, 3
complexity, 5
quality improvement, 6–9
analysis stage, 7–9
conduct of study, 6–7
planning stage, 6
quality issues, 4
uniqueness of, 5–6
OralCDx, 206–7, 319
ordinal regression, 201, 368
outcome of interest, 48
outpatient studies, 68–70
P-value, 164–6, 301, 316–17
misuses of, 180
paired t-test, 169–70
parachute arguments, 22
parallel-arm study design, 83
parental smoking, caries and, 355
partial correlation, 194–5
patient self-reported data see self-reported data
pattern mixture models, 250
Pearson’s correlation coefficient, 186
calculation of, 187
per-protocol (PP) population, 91–2
percentiles, 149
performance bias, 36, 37
periodontitis, 17–18, 244–5
genetic factors, 295–6, 302, 308
see also subantimicrobial dose doxycycline (SDD) study
personnel support, 53
PICO terminology, 48, 81–3
intervention and control, 82
outcome, 82–3
population, 81–2
planning a research project, 6
authorship credit, 57
cost estimation, 53–4
definition of research topic, 47–50
outcome of interest, 48
question of interest, 47–8
research information needed, 49
use of existing databases, 49–50
what is already known, 48–9
ethical issues, 55
funding sources, 54
making study data accessible, 58
monitoring progress and safety, 57–8
personnel support, 53
protocol, 57
recruitment, 56–7
research topic, 47–50
responsibility, 57
retention of subjects, 56–7
statistical analysis plan (SAP), 90
study design, 50–3
effect size, 50–1
sample size, 52–3
statistical analysis, 51–2
variability, 51
study timeline and workflow, 67–8
submission to regulatory agencies, 55–6
point estimates, 159
Poisson distribution, 154–6
Poisson regression, 201
polymorphism, 296
 single nucleotide polymorphism (SNP), 297
population, 158
 genetic structure, 309–10
 see also sampling
positive predictive value (PPV), 207, 319
postpositivism, 115–16
power of the test, 166–7
predictive values, 207–8
 negative (NPV), 207–8, 319
 positive (PPV), 207, 319
prevalence, 97, 98
 caries, 280, 281–3
primary endpoints, 90
principal investigator (PI), 62
prior distributions, 326–8
probability, 153–8
 distribution, 154
 binomial distribution, 154
 normal (Gaussian)
 distribution, 156–8, 196, 197
Poisson distribution, 154–6
 see also event probabilities
project coordinator, 63
proportion comparisons
 independent proportions in more than two groups, 176–7
 testing a single proportion, 173–4
 two dependent proportions, 176
 two independent proportions, 174–6
proportional odds model, 201
Protection of Personal Information laws, 73–4
Psychological Well-Being Scale, 139
Q-Q plot, 197
qualitative research, 113–29
 conducting, 118–26
 data analysis, 124–6
 data collection, 120–3
 mixing qualitative and quantitative methods, 118–19
 sampling, 119–20
historical view, 114
philosophical foundations, 114–16
purpose of, 116–17
validity, 126–8
data quality, 74–5, 132–5
 clinical criteria, 132–4
 data entry, 134–5
 measurement of calibration, 134
 missing data, 135
 patient self-reported data, 136–43
quality assessment, 9–10, 34–9
 broad dimensions of health care, 34–5
 external validity, 39
 internal validity, 35–9
 randomization checklist, 38
quality improvement, 6–9
reporting research, 9–10, 39–41
 see also validity
quality of life, 136, 139
 measures, 140
quartiles, 149
question see scientific question
random effects approach, 226–31
 analysis of binary responses, 229–31
 analysis of continuous responses, 227–9
 clustered binary responses, 229–31
 clustered continuous responses, 227–9
 clustered data, 226–31
random imbalances, 92
random variables, 154, 188–9
randomization, 87–8
 importance of, 71–2
 informed consent, 55
randomized controlled trials (RCTs), 15–16, 79–80, 359
cluster-randomized design, 86
tenrollment, randomized controlled trials, 87
implementation, 86–90
data management, 89–90
manual of procedures (MOP), 86
informed consent, 55
multicentre trials, 76–7
non-inferiority test, 179–80
primary endpoints, 90
procedures, 86–9
quality issues, 4
random imbalances, 92
randomization quality assessment, 38
secondary endpoints, 90
statistical analysis, 90–5
complications, 94–5
dealing with complexity, 92–5
statistical analysis plan (SAP), 90
stratified (randomized-block) study design, 84
superiority tests, 179
see also study design;
subantimicrobial dose doxycycline
(SDD) study
randomized-block study design, 84
recall bias, 110
recombination, 298
recruitment, 68–70
Direct-to-Participant Advertising, 68–9
hospital-based recruitment, 70–1
outpatient studies, 68–70
planning, 56–7
randomized controlled trials, 86, 365
retention of subjects, 56–7
reference periods, 142–3
regression, 183–4, 188
advanced methods, 200–2
generalized linear models, 201
nonlinear regression, 200–1
survival analysis, 202
 calibration, 291
Cox regression, 202, 269–70, 272–4
failure time analysis, 269–70
hazard regression, 264
logistic regression, 201, 286–7
model misspecification, 195–200
impacts of, 196–7
influential observations, 200
residual diagnostics, 197–9
multiple regression, 191–5
for controlling
confounders, 191–2, 372
general form of multiple regression model, 193
use for prediction, 193–4
ordinal regression, 201, 368
simple linear regression, 188–91
error and, 289–91
interpretation of regression coefficients, 190
least-squares estimates, 189–90
statistical inference for the regression coefficient, 190–1
use for prediction, 191
stepwise regression, 197
to the mean, 140–1, 184
regulatory agencies, 55–6
repeated measures ANOVA, 224–5
repeated measures study design, 84
reporting of results, 8
quality issues, 9–10, 39–41
evidence for improvement, 41
problems, 39–40
standards, 40–1
research, 3
effective use of, 29–31
phases of clinical research, 80–1
Phase I studies, 81
Phase II studies, 81
Phase III studies, 81
Phase IV studies, 81
quality assessment, see quality issues
see also oral health (OH) research
research topic planning, 47–50
outcome of interest, 48
question of interest, 47–8
research information needed, 49
use of existing databases, 49–50
what is already known, 48–9
response rates, 104–5
response shift, 140
responsiveness, 139–41
right censored data, 260–1
robust variance estimate, 196
ROC curve, 208
area under (AUC), 208, 212
binomial ROC curve, 211–12
empirical ROC curve, 210–11
estimation, 210
safety monitoring, 57–8, 89–90
sample attrition, 107
sample size, 51, 52–3, 101
genetic case-control studies, 309
qualitative research, 119–20
randomized controlled trials, 91, 367
sampling, 101–2, 158–9
convenience sampling, 104
Markov chain Monte Carlo sampling, 329–30
Monte Carlo sampling, 329
multistage sampling, 104
qualitative research, 119–20
stratified samples, 105–6
sampling frames, 102–4
scales of measurement, 148
scatterplot, 184–5
smoothers, 184–5
strength of association, 185
scientific question, 47–8, 80–3
formulation of, 81–3
intervention and control, 82
outcome, 82–3
population, 81–2
secondary endpoints, 90
selection bias, 35, 36, 109
selection models, 250
self-reported data, 136–43
choice of patient rated health status measures, 136–8
practical utility, 141–2
reasons for, 136
reference periods, 142–3
responsiveness, 139–41
validity, 138–9
weighting, 142
sensitivity, 206–7, 281
sequential regression multivariate imputation (SRMI), 249
sex chromosomes, 296
Signal-Tandmobiel® study, 155–6, 159, 285, 292, 316, 342–50
caries risk assessment model, 330–3, 345–6
inter-observer bias and variability, 349–50
study design, 342–5
clinical examinations, 344
data collection, 343
data management and analysis, 345
questionnaires, 343–4
timing emergence of permanent teeth, 333–5, 346–9
simulation and extrapolation (SIMEX), 292–3
single imputation, 247
single nucleotide polymorphism (SNP), 297
single-blinded studies, 72, 88–9
site-specific analysis, 222
Smile for Life (SFL) study, 330–3, 350–5
parental smoking behaviour and caries experience, 355
study design, 351–5
clinical assessment, 354
Smile for Life (SFL) study, (continued)
data collection, 351–2
data management, 354–5
oral health promotion
 intervention, 352–3
questionnaires, 353
specificity, 207, 281
split-mouth studies, 4, 85
split-plot study design, 85
standard deviation (SD), 151–2, 160
 residual, 194
standard error (SE), 160, 161–2
statistical analysis
 clustered data see clustered data
descriptive statistical tools, 184–8
 correlation, 186–8
 scatterplot, 184–5
likelihood, 177–9
measures of central
tendency, 148–50
measures of variability, 150–2
misuses of statistical tests, 180
probability, 153–8
quality issues, 4
 quality improvement, 7–8
questions with a nominal
 outcome, 173–7
questions with a numerical
 outcome, 167–73
randomized controlled
 trials, 90–5
dealing with complexity, 92–5
statistical analysis plan (SAP), 90
study design, 51–2
statistical inference, 158–67, 316–17
 Central Limit Theorem
 (CLT), 159–60, 196
 confidence intervals, 161–2, 191, 369
for the regression
 coefficient, 190–1
hypothesis testing, 163–4
 errors in, 166
 null- and alternative
 hypothesis, 162–3
 P-value, 164–6
 point estimates, 159
 population, 158
 power of the test, 166–7
 sampling, 158–9
 standard error (SE), 160
 statistical software, 180–1
 stepwise regression, 197
 stratified (randomized-block) study
design, 84
 stratified samples, 105–6
study coordinator, 63
study design, 50–3, 83–6
 case-control studies, 107–8
 cluster-randomized design, 86
 cohort studies, 106–7
 comparison of diagnostic test
 accuracy, 212–13
 cross-sectional studies, 101–6
 response rates, 104–5
 samples and populations, 101–2
 sampling frames, 102–4
 stratified samples, 105–6
 target populations, 102
crossover design, 84
effect size, 50–1
inherent variability, 51
longitudinal studies, 106–7
parallel-arm design, 83
sample size, 52–3
split-mouth design, 85
statistical analysis, 51–2
 stratified (randomized-block)
 design, 84
two or more treatment factors, 85
study initiation, 66–8
 obtaining funding, 66
 obtaining Institutional Review
 Board approval, 66–7
 planning study timeline and
 logistics, 67–8
study timeline, 67
subantimicrobial dose doxycycline (SDD) study, 359–75
aims, 360–1
endpoints, 361–4
primary radiographic endpoint, 361–3, 370–1
safety endpoint, 364, 372–4
secondary clinical endpoint, 363, 371–2
results, 370–4
study design, 364–9
eligibility criteria, 364
recruitment and follow-up, 365
sample size justification, 367
statistical analysis methods, 368–9
treatment assignment, 365–7
study implementation, 369–70
data collection and management, 369–70
planning and training, 369
sudden infant death syndrome, 30
Sums-of-Squares (SS), 171
superiority tests, 179
superiority trials, 90–1
surrogate endpoints, 18–20
survival analysis, 202, 259
see also failure time analysis
survival function, 260, 265–7
systematic reviews, 32, 33

t-test, 167–8
measurement error in, 289
paired, 169–70
unpaired, 168–9
target populations, 102
research team building, 62–6
biostatistician, 63–4
see also, Randomized Controlled Trials
clinical research monitor, 65
co-investigators, 62
colleagues as, 63
principal investigator, 62
project/study coordinator, 63
support personnel, 65
team management, 65–6
trainees, 65
temporomandibular joint (TMJ) disorder (TMD), 107–8
implants, 21
Thylstrup-Fejerskov Index, 148
time-varying effects, 270–3
trainees, 65
transferability, 126–8
transformations, 173, 193–4
treatment administration, 88
trephination, 21–2
triple-blinded studies, 72
ttrue positive fraction (TPF), 207, 212, 213
Two-Implant Overdenture (2-IO) Study, 149, 164, 171–2
type I error, 166
type II error, 166
unpaired _t_-test, 168–9
validation
external, 283
internal, 283–4
with replicate measurements, 284
validity, 131
blinding process, 72–3
discriminant, 139
external, 39
internal, 35–9
patient self-reported data, 138–9
qualitative research, 126–8
see also quality issues
variability, 51
between-group, 171
measures of, 150–2
inter-quartile range (IQR), 152
standard deviation (SD), 151–2
within-group, 171
variables, 148
independent, 186
variables, *(continued)*
random, 154, 188–9
with range restrictions, 187–8
variance
assumption of constant
variance, 196
residual diagnostics, 197–9
error variance, 196
measurement error, 287–8
mean-variance relationship, 199
see also analysis of variance
(ANOVA)

Visual Analogue Scales (VAS),
138

Wald-statistic, 179
weighted generalized estimating
equation (WGEE)
methods, 249
weighting of self-reported data, 142
Wilcoxon rank sum test, 169

Z-score, 158
zero correlation, 186–7