INDEX

A photoconductor, 30

Absolute humidity sensors, 29

Absolute humidity, 26, 28, 29

Accuracy, 33, 39, 94, 95, 60, 62, 64, 87, 132, 139, 131

Acquisition decision making, 114

Active mode, idle mode and sleep mode, 135

Aging, 4, 13, 23, 109, 112, 131

AI model-based, 129

Analog to digital (A/D) conversion, 32

ARM, 169

Auburn University, 279

Automatic logistics, 26

Availability, 1, 7, 17, 32, 38, 39, 99, 114, 119, 125, 126

Avoidance of failures, 93

BAE Systems, 171

Bar coding, 37

Base station, 36

Battery-powered sensor system, 43

Battery-free sensors, 43

Battery-free sensor systems, 43

Bayesian Welch algorithms, 51, 63

Bayes’s theorem, 61

Bayesian, 11, 19, 51, 58, 63

Biological, 25, 29, 37, 39

Biotechnology, 29

Bit error failures, 122

Body heat, 44

Boeing 7, 73, 109

Boeing, 173

Built-in sneak diode, 121

Built-in test (BIT), 3


CAlFE, 2, 7, 14, 73, 201, 100, 113, 130

Cannaries and Fuses, 121

Cannary devices, 7, 23, 26, 96, 121

Capacitive or inductive impedances, 28

Capacitive RFID sensors, 28

Capacitive voltage sensors, 33

Cellular, 37

Chemical sensing principles, 29

Chemical Sensors, 29

Chemical, 14, 13, 25, 38, 78, 79

Chi square test, 69, 74

China, 298

Classification, 30, 49, 52, 66, 69, 74, 120

Classification, 50, 52, 66

Clustering, 17, 34, 36, 72, 139

COCOMO, 99

Code Architecture, 132

Code Maintenance, 132

Commercially available, 38, 90

Common considerations, 33

Component Level, 120, 123, 129

Conditional probability, 50, 56, 59

Condition-based maintenance plus (CBMP), 4

Conductive filament formation, 81, 128

Conductive path formation, 124

Continuous distributions, 54

Continuous sampling, 56

Continuous sensing, 35

Continuous triggered thresholds, 35

Conventional numeric, 129

Correlation, 2, 9, 79, 117, 124, 126

Cost avoidance, 55, 93

Cost benefit analysis (CBA), 109

Cost benefit, 86, 109, 113, 131

Cost, 8, 17, 34, 38, 63, 82

Cost, R&D, Business Case Development, 131

Crankshaft parts, 125

Cushing, 121, 123

Counterfeit/temper detection, 121

Coupled waveguide sensors, 51

Countercraft, 51

Cramer-Rao Lower Bound, 52

Cross-functional, 131

Cumulative distribution functions (CDFs), 54

Current-to-voltage, 77

Damage propagation models, 129

Preparatory and Health Management of Electronics

By Michael G. Petrić

Copyright © 2000 John Wiley & Sons, Inc.

301
Log likelihood function, 501
Lower technologies, 122
LM11 dependent biases, 89, 96
LM11 independent biases, 89, 96
LM11 independent methodologies, 89
LM11 level, 99, 139, 176
LM11 Independent Methods, 97, 105
LM11 independent modeling, 98
LM11 independent models, 99
Machine learning, 43, 55, 56, 129, 133
Magnetic coupling, 41
Magnetic Sensors, 31
Magnetic, 28, 34, 44, 64, 74
Magnetometers, 31
Magnetometric, 31
Magnetooptic effect, 31
Magnetoresistance, 31
Magnetostriuctive effect, 31
Magnetotransistor sensors, 31
Mahalanobis distance, 53
Maintenance costs, 36, 87, 109, 119
Maintenance Culture, 91
Maintenance planning, 93, 102, 117
Maintenance, 3, 14, 36, 73, 122, 125
Maintenance, repair, and overhaul operations (MROs), 110
Mass sensor, 56
Mathematical model, 56
Maximum A Posteriori Estimation, 51
Maximum Likelihood Estimation, 49
Maximum likelihood, 49, 53
Measure, 25, 31
Measurement range, 33, 39
Mechanical Sensors, 28
Mechanical, 12, 25, 44, 61, 79, 119
Memories, 122
Memory management, 34, 39
Memory, 13, 19, 32, 122, 126
MEMS sensing devices, 128
MEMS sensors, 46
Micro breed sensors, 31
Micromotors, 31
Microprocessors, 19, 34, 121
MicroWIT, 145
Millimeter Wave, 139
Minimisation, 44
Minimum Mean Square Error Estimation, 49, 51
Minimum Mean Square Error Estimation, 114
MIT WISEM, 140
Mutualism of Reliability Risks, 126
Modern pacemaker, 48
Monte Carlo analysis, 109
Monte Carlo simulation, 17, 176
Mounting methods, 34
Moving fiber optic hydrophones, 41
MSITSPRT, 130
Multifunction display (MFD), 109
Multilayer perceptron, 59
Multiple functions, 41
Multiple parameters, 45
Multiple sensors, 46, 47
Multiple Strokes, 95, 96, 108
Multiple, flexible or add on sensor ports, 41
Multiple state estimation techniques (MSET), 12, 50, 146
Naive Bayesian Classifier, 38, 61
NASA, 4, 63, 86, 119, 129
National Aeronautics and Space Administration, 73
National Defense Industrial Association (NDIA), 121, 126
Nearest Neighbor, 49, 57, 58, 63
NEMS, 44
Neural Networks, 19, 34, 129
Neumann-Pearson Criterion, 56
Non-battery powered sensor systems, 34
Non-definition events, 96
Noninvasive (NI) techniques, 126
Nonparametric Statistical Method, 52
Nonrecurring Costs, 90, 112
Numerical Benchmark, 131, 133
Numerical distance, 59
Northern Guidance, 211
No trouble found at fault found (NTFF), 119, 126:
NVRAM, 75, 89
Office of Management and budget (OMB), 109
Onboard battery, 34
Onboard Memory and Memory Management, 34
Onboard memory, 32, 39
Onboard Power, 34, 40
Onboard processing, 36
Onboard signal processing, 35
Operational Profile, 85, 100, 110
Optical (Radiant), 23
Optical biosensors, 29.
Schlumberger, 120
Scientific Monitoring, Inc, 222
Security of wireless data, 37
Self-calibration, 38
Self-diagnoses, 38
Self-healing, 122, 126
Self-monitoring analysis and reporting technology (SMART), 12, 22
Semiconductor Industry Association (SIA), 122
Sensing modes, 35
Sensing principles, 25, 29
Sensitivity, 17, 31, 39, 59, 62, 67, 81, 132
Sensor fusion, 38
Sensor System Performance, 33
Sensor system selection, 32
Sensor Systems, 19, 25, 32, 41, 121
Sensor validation, 38
Sensor’s environmental and operating range, 38
Sentient Corporation, 220
Sequential Monte Carlo method (SMC), 65
Sequential probability ratio test (SPRT), 12, 50, 130
SG Link® Wireless Strain Node, 153
Shop Replaceable Units (SRUs), 88
Signal Processing Software, 36, 41
Signal processing, 35
Single-event upset, 122
Smart sensor nodes, 45
SmartButton, 137
SmartSignal Corporation, 225
Smiths Aerospace (GII), 226
Socket, 89, 94
Software, 3, 13, 32, 36, 40, 73, 87, 90, 120, 123, 127, 132
Solar cells, 44
Solder fatigue, 125
Source Lines of Code (SLOC), 90
Southwest Airlines, 109, 110
Sound, 31
SR-1 Series, 165
SRAM components, 122
Stabilization time, 33, 39
Standards Organizations, 133
State-of-the-art and the availability of the sensor systems, 39
Statistical methods, 47, 52, 67, 70
Statistics, 47, 51, 54, 129
Stochastic analysis, 95, 101
Stochastic decision model, 95
Strain gauges, 15, 28
Strain, 13, 15, 25, 28, 31, 42, 73, 79
Stroboscopic effect, 27
Structural health monitoring (SHM), 131
Stryker Brigade Combat Team (SBCT), 87
Sufficient Statistic, 52
Sun Microsystems, 12, 120, 127, 130
Sun Microsystems, 220
Sunlight, 44
Supervised learning, 56, 60, 130
Supplier, 38, 125, 132
Supply and logistics, 125
Supply chains, 120, 125
Support Vector Machines, 19, 60
Survey, 4, 38, 41, 119, 129
SVM-Based Approach, 58, 63
Switching power electronics, 123
System of systems, 18, 74
System theory, 129
Systems of systems, 120
Tag devices, 126
TG-Link® Wireless, 155
Test statistic, 49, 54
Thermal conductivity humidity sensors, 28
Thermal detectors (RTDs), 26
Thermal gradient, 44
Thermal voltage sensors, 27
Thermal, 13, 25, 44, 74, 95, 123, 127
Thermistor, 26, 29
Thermocouple, 46
Thermoelectric effect, 26, 44
Thermoelectric generators, 44
Thin whisker, 121, 124
Total internal reflection sensors, 31
Trade Space Visualizer, 57
Training, 4, 50, 68, 82, 87, 90, 121, 124, 232
Transduction, 25
Transfer range and speed of an RFID tag, 37
U.S. Air Force JSF program, 120
U.S. Army’s Future Combat Systems, 129
Ultra low-power electronics, 44
Ultra-low power consumption, 44