CONTENTS

List of Tables xi
Preface xvii

1 Typical Stated Choice Experiments 1
 1.1 Definitions 2
 1.2 Binary Response Experiments 3
 1.3 Forced Choice Experiments 5
 1.4 The "None" Option 7
 1.5 A Common Base Option 8
 1.6 Avoiding Particular Level Combinations 9
 1.6.1 Unrealistic Treatment Combinations 9
 1.6.2 Dominating Options 10
 1.7 Other Issues 11
 1.7.1 Other Designs 11
 1.7.2 Non-mathematical Issues for Stated Preference Choice
 Experiments 11
 1.7.3 Published Studies 12
 1.8 Concluding Remarks 13
2 Factorial Designs 15

2.1 Complete Factorial Designs 16
2.1.1 2^k Designs 16
2.1.2 3^k Designs 19
2.1.3 Asymmetric Designs 24
2.1.4 Exercises 25

2.2 Regular Fractional Factorial Designs 27
2.2.1 Two-Level Fractions 27
2.2.2 Three-Level Fractions 33
2.2.3 A Brief Introduction to Finite Fields 37
2.2.4 Fractions for Prime-Power Levels 39
2.2.5 Exercises 41

2.3 Irregular Fractions 41
2.3.1 Two Constructions for Symmetric OAs 43
2.3.2 Constructing OAs [2^k, 2^{k1}, 4^{k2}, 4] 44
2.3.3 Obtaining New Arrays from Old 46
2.3.4 Exercises 52

2.4 Other Useful Designs 53

2.5 Tables of Fractional Factorial Designs and Orthogonal Arrays 55
2.5.1 Exercises 56

2.6 References and Comments 56

3 The MNL Model and Comparing Designs 57

3.1 Utility and Choice Probabilities 58
3.1.1 Utility 58
3.1.2 Choice Probabilities 59

3.2 The Bradley–Terry Model 60
3.2.1 The Likelihood Function 61
3.2.2 Maximum Likelihood Estimation 62
3.2.3 Convergence 65
3.2.4 Properties of the MLEs 67
3.2.5 Representing Options Using k Attributes 70
3.2.6 Exercises 79

3.3 The MNL Model for Choice Sets of Any Size 79
3.3.1 Choice Sets of Any Size 79
3.3.2 Representing Options Using k Attributes 82
3.3.3 The Assumption of Independence from Irrelevant Alternatives 82
3.3.4 Exercises 83

3.4 Comparing Designs 83
3.4.1 Using Variance Properties to Compare Designs 84
3.4.2 Structural Properties 88
4 Paired Comparison Designs for Binary Attributes 95

4.1 Optimal Pairs from the Complete Factorial 95
4.1.1 The Derivation of the A Matrix 97
4.1.2 Calculation of the Relevant Contrast Matrices 99
4.1.3 The Model for Main Effects Only 100
4.1.4 The Model for Main Effects and Two-factor Interactions 105
4.1.5 Exercises 117

4.2 Small Optimal and Near-optimal Designs for Pairs 118
4.2.1 The Derivation of the A Matrix 118
4.2.2 The Model for Main Effects Only 119
4.2.3 The Model for Main Effects and Two-Factor Interactions 121
4.2.4 Dominating Options 133
4.2.5 Exercises 134

4.3 References and Comments 134

5 Larger Choice Set Sizes for Binary Attributes 137

5.1 Optimal Designs from the Complete Factorial 138
5.1.1 Difference Vectors 138
5.1.2 The Derivation of the A Matrix 143
5.1.3 The Model for Main Effects Only 147
5.1.4 The Model for Main Effects and Two-Factor Interactions 152
5.1.5 Exercises 159

5.2 Small Optimal and Near-Optimal Designs for Larger Choice Set Sizes 159
5.2.1 The Model for Main Effects Only 160
5.2.2 The Model for Main Effects and Two-Factor Interactions 163
5.2.3 Dominating Options 164
5.2.4 Exercises 165

5.3 References and Comments 165

6 Designs for Asymmetric Attributes 167

6.1 Difference Vectors 169
6.1.1 Exercises 173

6.2 The Derivation of the Information Matrix 174
6.2.1 Exercises 180

6.3 The Model for Main Effects Only 180
6.3.1 Exercises 189

6.4 Constructing Optimal Designs for Main Effects Only 189
6.4.1 Exercises 197
6.5 The Model for Main Effects and Two-Factor Interactions 197
6.5.1 Exercises 209
6.6 References and Comments 210
Appendix 211
6. A.1 Optimal Designs for \(m = 2 \) and \(k = 2 \) 212
6. A.2 Optimal Designs for \(m = 2 \) and \(k = 3 \) 213
6. A.3 Optimal Designs for \(m = 2 \) and \(k = 4 \) 217
6. A.4 Optimal Designs for \(m = 2 \) and \(k = 5 \) 220
6. A.5 Optimal Designs for \(m = 3 \) and \(k = 2 \) 221
6. A.6 Optimal Designs for \(m = 4 \) and \(k = 2 \) 223
6. A.7 Optimal Designs for Symmetric Attributes for \(m = 2 \) 225

7 Various Topics 227
7.1 Optimal Stated Choice Experiments when All Choice Sets Contain a Specific Option 228
7.1.1 Choice Experiments with a None Option 228
7.1.2 Optimal Binary Response Experiments 233
7.1.3 Common Base Option 234
7.1.4 Common Base and None Option 236
7.2 Optimal Choice Set Size 237
7.2.1 Main Effects Only for Asymmetric Attributes 237
7.2.2 Main Effects and Two-Factor Interactions for Binary Attributes 240
7.2.3 Choice Experiments with Choice Sets of Various Sizes 242
7.2.4 Concluding Comments on Choice Set Size 243
7.3 Partial Profiles 243
7.4 Choice Experiments Using Prior Point Estimates 245
7.5 References and Comments 246

8 Practical Techniques for Constructing Choice Experiments 249
8.1 Small Near-Optimal Designs for Main Effects Only 251
8.1.1 Smaller Designs for Examples in Section 6.4 251
8.1.2 Getting a Starting Design 256
8.1.3 More on Choosing Generators 264
8.2 Small Near-Optimal Designs for Main Effects Plus Two-Factor Interactions 269
8.2.1 Getting a Starting Design 269
8.2.2 Designs for Two-Level Attributes 271
8.2.3 Designs for Attributes with More than Two Levels 272
8.2.4 Designs for Main Effects plus Some Two-Factor Interactions 276
8.3 Other Strategies for Constructing Choice Experiments 279
LIST OF TABLES

1.1 Attributes and Levels for the Survey to Enhance Breast Screening Participation 4
1.2 One Option from a Survey about Breast Screening Participation 5
1.3 Six Attributes to be Used in an Experiment to Compare Pizza Outlets 6
1.4 One Choice Set in an Experiment to Compare Pizza Outlets 6
1.5 Attributes and Levels for the Study Examining Preferences for HIV Testing Methods 7
1.6 One Choice Set from the Study Examining Preferences for HIV Testing Methods 8
1.7 Five Attributes to be Used in an Experiment to Investigate Miscarriage Management Preferences 9
1.8 Five Attributes Used to Compare Aspects of Quality of Life 10
2.1 Values of Orthogonal Polynomials for \(n = 3 \) 22
2.2 \(A, B, \) and \(AB \) Contrasts for a 3\(^2\) Factorial 23
2.3 \(A, B, \) and \(AB \) Contrasts for a 3\(^3\) Factorial 24
2.4 Main Effects Contrasts for a 2 \(\times \) 3 \(\times \) 4 Factorial 25
2.5 A Regular 2\(^{4-1}\) Design 27
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.6</td>
<td>Non-overlapping Regular 2^{n-2} Designs</td>
<td>28</td>
</tr>
<tr>
<td>2.7</td>
<td>A 2^{4-1} Design of Resolution 4</td>
<td>29</td>
</tr>
<tr>
<td>2.8</td>
<td>Contrasts for the 2^4 design</td>
<td>30</td>
</tr>
<tr>
<td>2.9</td>
<td>Smallest Known 2-Level Designs with Resolution at Least 3</td>
<td>32</td>
</tr>
<tr>
<td>2.10</td>
<td>Smallest Known 2-Level Designs with Resolution at Least 5</td>
<td>32</td>
</tr>
<tr>
<td>2.11</td>
<td>A Design with 6 Binary Factors of Resolution 3</td>
<td>33</td>
</tr>
<tr>
<td>2.12</td>
<td>A 3^{4-2} Fractional Factorial Design</td>
<td>34</td>
</tr>
<tr>
<td>2.13</td>
<td>Pencils for a 3^2 Factorial Design</td>
<td>35</td>
</tr>
<tr>
<td>2.14</td>
<td>Contrasts for a 3^2 Factorial Design</td>
<td>36</td>
</tr>
<tr>
<td>2.15</td>
<td>Contrasts for a 3^{4-2} Factorial Design</td>
<td>36</td>
</tr>
<tr>
<td>2.16</td>
<td>Smallest Known Regular 3-Level Designs with Resolution at Least 3</td>
<td>37</td>
</tr>
<tr>
<td>2.17</td>
<td>Smallest Known 3-Level Designs with Resolution at Least 5</td>
<td>38</td>
</tr>
<tr>
<td>2.18</td>
<td>The Finite Field with 4 Elements</td>
<td>39</td>
</tr>
<tr>
<td>2.19</td>
<td>A Resolution 3 4^{6-3} Fractional Factorial Design</td>
<td>40</td>
</tr>
<tr>
<td>2.20</td>
<td>A Resolution 3 Fractional Factorial Design for Seven 3-Level Factors</td>
<td>44</td>
</tr>
<tr>
<td>2.21</td>
<td>Generators for $OA[2^6; 2^6, 2^6; 4]$</td>
<td>45</td>
</tr>
<tr>
<td>2.22</td>
<td>The $OA[64; 2^8, 2^4; 4]$</td>
<td>46</td>
</tr>
<tr>
<td>2.23</td>
<td>A Resolution 3 Fractional Factorial Design for Three 2-Level Factors and Four 3-Level Factors</td>
<td>47</td>
</tr>
<tr>
<td>2.24</td>
<td>An $OA[16, 5, 4, 2]$</td>
<td>48</td>
</tr>
<tr>
<td>2.25</td>
<td>An $OA[4, 3, 2, 2]$</td>
<td>48</td>
</tr>
<tr>
<td>2.26</td>
<td>An $OA[16; 2, 2, 2, 4, 4, 4, 4; 2]$</td>
<td>48</td>
</tr>
<tr>
<td>2.27</td>
<td>An $OA[16, 15, 2, 2]$</td>
<td>49</td>
</tr>
<tr>
<td>2.28</td>
<td>An $OA[12; 2, 2, 2, 2; 2]$</td>
<td>50</td>
</tr>
<tr>
<td>2.29</td>
<td>An $OA[16; 6, 2, 2]$</td>
<td>51</td>
</tr>
<tr>
<td>2.30</td>
<td>An $OA[12; 2, 2, 6; 2]$</td>
<td>51</td>
</tr>
<tr>
<td>2.31</td>
<td>An $OA[12; 2, 2, 6; 2]$ without 000</td>
<td>52</td>
</tr>
<tr>
<td>2.32</td>
<td>An $OA[8, 6, 2, 2]$</td>
<td>53</td>
</tr>
<tr>
<td>2.33</td>
<td>The Blocks a $(7, 3, 1)$ BIBD</td>
<td>53</td>
</tr>
<tr>
<td>2.34</td>
<td>Some Small Difference Sets</td>
<td>54</td>
</tr>
<tr>
<td>2.35</td>
<td>Some Small Difference Families</td>
<td>55</td>
</tr>
<tr>
<td>Section</td>
<td>Title</td>
<td>Page</td>
</tr>
<tr>
<td>---------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>3.1</td>
<td>Choice Sets and Choices for Example 3.2.2, with t = 4, s = 5</td>
<td>63</td>
</tr>
<tr>
<td>3.2</td>
<td>Estimates of (\pi) from All Six Choice Sets</td>
<td>64</td>
</tr>
<tr>
<td>3.3</td>
<td>Estimates of (\pi) from the First Three Choice Sets Only</td>
<td>66</td>
</tr>
<tr>
<td>3.4</td>
<td>Unconstrained Representation of Treatment Combinations</td>
<td>71</td>
</tr>
<tr>
<td>3.5</td>
<td>Constrained Representation of Treatment Combinations</td>
<td>72</td>
</tr>
<tr>
<td>3.6</td>
<td>The Fold-over Pairs with (k = 3)</td>
<td>79</td>
</tr>
<tr>
<td>3.7</td>
<td>Triples of Pairs for (k = 2) and the Corresponding D-, A- and E-Optimum Values</td>
<td>86</td>
</tr>
<tr>
<td>3.8</td>
<td>Two Choice Experiments</td>
<td>88</td>
</tr>
<tr>
<td>3.9</td>
<td>A Choice Experiment for the Estimation of Main Effects when There Are 3 Attributes with 2, 3, and 6 Levels which Satisfies the Huber-Zwering Conditions but for which Main Effects Cannot Be Estimated.</td>
<td>90</td>
</tr>
<tr>
<td>3.10</td>
<td>An Optimal Choice Experiment for the Estimation of Main Effects when There Are 3 Attributes with 2, 3, and 6 Levels</td>
<td>91</td>
</tr>
<tr>
<td>4.1</td>
<td>Six Attributes to Be Used in an Experiment to Compare Pizza Outlets</td>
<td>96</td>
</tr>
<tr>
<td>4.2</td>
<td>One Choice Set in an Experiment to Compare Pizza Outlets</td>
<td>96</td>
</tr>
<tr>
<td>4.3</td>
<td>The Possible Designs and Corresponding A Matrices for (k = 2)</td>
<td>99</td>
</tr>
<tr>
<td>4.4</td>
<td>All Possible Pairs when (k = 3)</td>
<td>99</td>
</tr>
<tr>
<td>4.5</td>
<td>The 7 Competing Designs for Main Effects Only for Pairs with (k = 3)</td>
<td>104</td>
</tr>
<tr>
<td>4.6</td>
<td>The 7 Competing Designs for Main Effects and Two-Factor Interactions for Pairs with (k = 3)</td>
<td>108</td>
</tr>
<tr>
<td>4.7</td>
<td>Two Designs with Four Pairs for (k = 4) Binary Attributes</td>
<td>119</td>
</tr>
<tr>
<td>4.8</td>
<td>Non-regular OMEPs of Resolution 3</td>
<td>122</td>
</tr>
<tr>
<td>4.9</td>
<td>The Pairs from the Complete Factorial when (k = 3) and (e = (0, 1, 1))</td>
<td>128</td>
</tr>
<tr>
<td>4.10</td>
<td>The Pairs from the Fraction in Example 4.2.4 when (e = (0, 1, 1))</td>
<td>128</td>
</tr>
<tr>
<td>4.11</td>
<td>The Blocks in a ((7,3,1)) BIBD</td>
<td>131</td>
</tr>
<tr>
<td>4.12</td>
<td>D-Efficiency and Number of Pairs for Some Constant Difference Choice Pairs</td>
<td>131</td>
</tr>
<tr>
<td>5.1</td>
<td>Attributes and Levels for Holiday Packages</td>
<td>138</td>
</tr>
<tr>
<td>5.2</td>
<td>One Choice Set for the Possible Holiday Packages</td>
<td>139</td>
</tr>
<tr>
<td>5.3</td>
<td>All Possible Triples when (k = 3)</td>
<td>141</td>
</tr>
<tr>
<td>5.4</td>
<td>All Possible Triples when (k = 3) Sorted by Difference Vector</td>
<td>143</td>
</tr>
</tbody>
</table>
5.5 All Possible Choice Experiment Designs for Binary Attributes when \(k = 3 \) and \(m = 3 \) \hspace{1cm} 152

5.6 The Efficiency, for the Estimation of Main Effects plus Two-Factor Interactions, of the 7 Competing Designs when \(k = 3 \) and \(m = 3 \) \hspace{1cm} 158

5.7 Optimal Choice Sets for Estimating Main Effects Only for \(m = 5 \) and \(k = 9 \). \hspace{1cm} 163

5.8 Near-Optimal Choice Sets for Estimating Main Effects and Two-Factor Interactions for \(m = 3 \) and \(k = 4 \). \hspace{1cm} 165

6.1 Attributes and Levels for the Study Examining Preferences for HIV Testing Methods \hspace{1cm} 168

6.2 One Choice Set from the Study Examining Preferences for HIV Testing Methods \hspace{1cm} 168

6.3 All Possible Choice Sets when \(m = 3 \), \(k = 2 \), \(\ell_1 = 2 \), and \(\ell_2 = 3 \) \hspace{1cm} 170

6.4 All Possible Choice Sets when \(m = 4 \), \(k = 2 \), \(\ell_1 = 2 \), and \(\ell_2 = 3 \) \hspace{1cm} 172

6.5 All Possible Triples when \(k = 2 \), \(\ell_1 = 2 \), and \(\ell_2 = 3 \) Sorted by Difference Vector \hspace{1cm} 173

6.6 All Possible Choice Experiments for \(k = 2 \), \(\ell_1 = 2 \), and \(\ell_2 = 3 \) when \(m = 3 \) \hspace{1cm} 190

6.7 Choice Sets when \(k = 2 \), \(\ell_1 = 2 \), \(\ell_2 = 3 \), and \(m = 3 \) \hspace{1cm} 194

6.8 All Possible Choice Experiment Designs for \(k = 2 \), \(\ell_1 = 2 \), and \(\ell_2 = 3 \) when \(m = 3 \): Main Effects and Two-Factor Interactions \hspace{1cm} 206

6.9 Values of \(\alpha_{v_1} \) for \(m = 2 \) and \(k = 2 \) \hspace{1cm} 208

6.10 Values of \(\det(C_{M_j}) \) for \(m = 2 \) and \(k = 2 \) \hspace{1cm} 208

7.1 Efficiencies of the Four Designs Discussed in Example 7.1.1 \hspace{1cm} 232

7.2 Choice Sets with \(k = 3 \) Attributes, \(\ell_1 = \ell_2 = 2 \) and \(\ell_3 = 4 \) \hspace{1cm} 233

7.3 Efficiency of Different Values of \(m \) for Five Attributes, Each with Four Levels for Main Effects Only. \hspace{1cm} 239

7.4 Efficiency of Different Values of \(m \) for Four Asymmetric Attributes for Main Effects Only. \hspace{1cm} 241

7.5 Efficiency of Different Values of \(m \) for 6 Binary Attributes when Estimating Main Effects and Two-factor Interactions. \hspace{1cm} 241

7.6 Choice Sets of Up to Three Different Sizes for 6 Binary Attributes for Main Effects Only. \hspace{1cm} 243

7.7 Sixteen Attributes Used to Describe Pizzas \hspace{1cm} 244

7.8 \((16,20,5,4,1)\) BIBD \hspace{1cm} 245
7.9 The Four Choice Sets from the First Block of the (16, 20, 5, 4, 1)BIBD 245
7.10 The Treatment Combinations and the Corresponding Assumed \(\pi \)_i 247
8.1 Optimal Choice Sets for \(k = 2, \ell_1 = 2, \ell_2 = 3 \) when \(m = 3 \) for Main Effects Only 252
8.2 Near-Optimal Choice Sets for \(k = 2, \ell_1 = \ell_2 = 4 \) when \(m = 6 \) for Main Effects Only 254
8.3 Difference Vectors and Sets of Generators for \(k = 3, \ell_1 = 2, \ell_2 = 3, \) and \(\ell_3 = 6 \) 254
8.4 \(2 \times 3 \times 6/18 \) Fractional Factorial Design Obtained from the \(3 \times 3 \times 6/18 \) by Collapsing One Attribute 255
8.5 Near-Optimal Choice Sets for \(k = 3, \ell_1 = 2, \ell_2 = 3, \) and \(\ell_3 = 6 \) when \(m = 3 \) for Main Effects Only 256
8.6 Near-Optimal Choice Sets for \(k = 4, \ell_1 = \ell_2 = 2, \ell_3 = 3, \) and \(\ell_4 = 6 \) when \(m = 3 \) for Main Effects Only 258
8.7 Near-Optimal Choice Sets for \(k = 4, \ell_1 = \ell_2 = 2, \ell_3 = 3, \) and \(\ell_4 = 6 \) when \(m = 4 \) for Main Effects Only 259
8.8 Starting Design and Near-Optimal Choice Sets for \(k = 5, \ell_1 = \ell_2 = \ell_3 = 2, \) and \(\ell_4 = \ell_5 = 4 \) when \(m = 4 \) for Main Effects Only 260
8.9 Common Collapsing/Replacement of Attribute Levels 261
8.10 Choice Sets for \(k = 5, \ell_1 = \ell_2 = \ell_3 = 2, \) and \(\ell_4 = \ell_5 = 4 \) when \(m = 2 \) for Main Effects Only 262
8.11 \(2^{12} \times 4/16 \) Obtained from \(4^5/16 \) by Expansive Replacement, and Choice Sets for \(m = 3 \) 262
8.12 \(2^{12} \times 4/16 \) Obtained from \(2^{15}/16 \) by Contractive Replacement, and Choice Sets for \(m = 3 \) 263
8.13 A Different \(2^{12} \times 4/16 \) and Choice Sets for \(m = 3 \) 264
8.14 Different Designs for \(k = 17, \ell_1 = 2, \ell_2 = 1, \ldots, 16, \) and \(\ell_{17} = 13 \) when \(m = 2, 3, 4, 5 \) for Main Effects Only 266
8.15 \(4^5 \times 2^2 \times 8/32 \) and \(4^5 \times 8/32 \) OMEPs 268
8.16 \(9 \times 4^5 \times 2^2 \times 8/288 \) by Adding Another Attribute to the \(4^9 \times 2^2 \times 8/32 \) 269
8.17 \(4^5 \times 2 \times 8^3/64 \) OMEP Obtained from \(8^9/64 \) by Collapsing the Levels of 6 Attributes 270
8.18 Fractional Factorial of Resolution 7 for \(\ell_q = 2, q = 1, \ldots, 7 \) 272
8.19 Near-Optimal Choice Sets for \(\ell_q = 2, q = 1, \ldots, 7 \) and \(m = 2 \) for Main Effects and All Two-Factor Interactions 273
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.20</td>
<td>Choice Sets for $k = 5$, $\ell_1 = \ell_2 = \ell_4 = \ell_5 = 2$, $\ell_3 = 4$ when $m = 3$ for Main Effects and All Two-Factor Interactions</td>
<td>275</td>
</tr>
<tr>
<td>8.21</td>
<td>Choice Sets for $k = 3$, $\ell_1 = \ell_2 = 3$, and $\ell_3 = 5$ when $m = 3$ for Main Effects and All Two-Factor Interactions</td>
<td>277</td>
</tr>
<tr>
<td>8.22</td>
<td>Choice Sets for $k = 4$ Binary Attributes when $m = 2$ for Main Effects and Interactions AB, AD, and BD</td>
<td>278</td>
</tr>
<tr>
<td>8.23</td>
<td>Choice Sets for $k = 6$ Attributes, $\ell_1 = 3$, $\ell_2 = \ell_3 = 2$, $\ell_4 = 2$, and $\ell_5 = 4$ when $m = 3$ for Main Effects and Interactions AB, AC, AD, AE, and AF</td>
<td>280</td>
</tr>
<tr>
<td>8.24</td>
<td>Random Method 1 Choice Sets</td>
<td>281</td>
</tr>
<tr>
<td>8.25</td>
<td>Random Method 1 Choice Sets: C_M Matrix</td>
<td>282</td>
</tr>
<tr>
<td>8.26</td>
<td>Random Method 2 Choice Sets</td>
<td>283</td>
</tr>
<tr>
<td>8.27</td>
<td>Random Method 2 Choice Sets: C_M Matrix</td>
<td>284</td>
</tr>
<tr>
<td>8.28</td>
<td>Choice Sets which Satisfy Huber & Zwerina Criteria</td>
<td>285</td>
</tr>
<tr>
<td>8.29</td>
<td>Choice Sets which Satisfy Huber & Zwerina Criteria: C_M Matrix</td>
<td>286</td>
</tr>
<tr>
<td>8.30</td>
<td>L^{MA} Choice Sets</td>
<td>288</td>
</tr>
<tr>
<td>8.31</td>
<td>Choice Sets from SAS Macros</td>
<td>289</td>
</tr>
<tr>
<td>8.32</td>
<td>Choice Sets from SAS Macros: C_M^{-1} Matrix</td>
<td>289</td>
</tr>
<tr>
<td>8.33</td>
<td>Street–Burgess Choice Sets</td>
<td>290</td>
</tr>
<tr>
<td>8.34</td>
<td>Street–Burgess Choice Sets: C_M Matrix</td>
<td>290</td>
</tr>
<tr>
<td>8.35</td>
<td>Comparison of Construction Methods for Main Effects Only</td>
<td>292</td>
</tr>
<tr>
<td>8.36</td>
<td>Comparison of Construction Methods for Main Effects and Two-Factor Interactions</td>
<td>293</td>
</tr>
</tbody>
</table>