Index

3-noded membrane element, 148
4-noded element, 146
4-noded membrane element, 145, 165, 166, 169
6-noded membrane element, 148
8-noded hexahedral (brick) element, 149
8-noded membrane element, 152, 159, 160
20-noded hexahedral (brick) element, 152, 153

Acceptable magnitude of error or uncertainty, 132
Accumulation of errors and uncertainties, 241
Accuracy ladder, 164–173
Accuracy limits, 263
Accuracy margins, 263
Action plan, 258
Adams, V., 3
Adaptive meshing, 3, 173, 178, 214
Additional right-hand sides, 237
Adhesive bonded joint, 194
Ad-hoc method, 176
Aircraft attachments, 124
Aircraft moving surfaces, 124
Aircraft outer wing skin, 205
Aircraft wing, 47
Allowable values, 131, 132
Alternative level of abstraction, 186
Ambient stress levels, 285
Analysis and test, 198, 246
Analysis approach, 164, 165, 275
Analysis assessment, 264, 311, 335
Analysis-based estimates, 133
Analysis decisions, 180
Analysis features, 178
Analysis loop, 29–32, 37, 49, 59
Analysis novelty, 120, 122
Analysis problem overview, 262, 270, 309
Analysis qualification, 2, 125, 129, 256
Analysis review, 277, 281, 320
Analysis scope, 281
Analysis targets, 129, 231
Analysis type, 125, 136, 264, 311
Analysis validation plan (AVD), 135, 316
Analyst requested tests, 244
Anisotropic material, 122–124, 199, 211, 244, 245
ANSYS code, 338
Carbon fibre reinforced composites, 201
Cataloguing process, 250
Central finite differences, 69
Certification parameters, 263, 300
Certification process, 130, 200
Certification requirements, 116, 125, 310
Challenge hypothesis, 184
Chandrupatia, T., 3, 19
Change in stiffness properties, 219, 221
Church–Turing theorem, 9, 10, 118
Civil airliner, 123, 205
Class 1 qualification codes, 130
Class 2 qualification codes, 308
Class 3 qualification codes, 131
Coherent sequence, 115
Commercial systems, 25, 74
Common sense, 10, 92, 127, 138, 139, 178
Compilation of available information, 265, 312
Complete strain compatibility, 156
Complete stress states, 146
Completeness in model selection, 213
Completeness of models, 119
Complex analysis, 38, 177, 215, 282, 284, 298, 305
Complex design problem, 33
Complexity, 2, 8, 14, 71, 116, 120, 123–125, 127, 128, 138, 184, 187, 279, 315, 322
Component level assessment, 130, 279
Component mode synthesis, 76
Computability, 10
Computational efficiency, 190
Computed measurements, 187
Computing power assessment, 280
Condensation, 12, 33, 40–42, 47, 72, 73, 77, 198, 255
Condensed stiffness matrix, 42
Confidence levels, 243
Connection quantities, 4, 5, 27, 29, 88–90, 212
Consistent loads, 30, 90, 92
Constant stress element, 104, 148, 149, 151, 164, 254, 255, 336, 337, 341
Constrained normal modes, 76
Construction details, 262
Contact zone, 319, 321, 322, 330, 340, 342, 343, 345, 348
Contour plots, 257
Convergent process, 13, 79
Coupon tests, 119, 137
Court of law, 213
Cranfield University, 116, 179, 185, 204
Critical damping, 68
Cyclically repeat symmetry, 39, 71
Damped forced responses, 66–70
Damping action, 53
Damping matrix, 53, 66
Data sheets, 137, 265, 312
Database information, 265
Database models, 126
Datum, 54, 126–128
models, 126, 127
Decomposition based on loading, 318
Decomposition of structure, 273, 276, 318
Degree of complexity, 120, 123, 127, 184
Degrees of freedom, 27, 29, 33, 38, 43, 45, 48, 54, 55, 71–78, 152, 191, 226, 227
De-idealisation, 7, 115
Depth of analysis, 123, 192, 193, 195, 205
Design complexity, 125
Design constraints, 262, 310
Design environment, 116, 124, 136, 253, 263
Design imposed analysis limitations, 310
Design phase, 133
Design reduction, 116, 175–177
De-skilling, 113
Detailed assessment, 269, 277, 278, 289, 317, 321, 330
Dhatt, G., 20
Direct integration, 12, 62, 64–66, 69, 70
Direct mathematical solution, 253
Direct method, 20, 65, 231, 236–239
Direct sensitivity methods, 16, 240
for buckling analysis, 234–235
for dynamic analysis, 227, 231
for static analysis, 218, 225
Discontinuities, 5, 116, 273
Discrepancies, 133, 187, 188
Discrete attachments, 194, 195, 295
Discrete points, 13, 21, 243
Discretisation, 14, 15, 117, 143
Displacement amplitudes, 54
Displacement boundary, 38, 83, 84
Displacement convergence, 106
Displacement elements, 3, 5, 104
Displacement field, 3–6, 30, 34, 35, 166, 193, 325, 334
Displacement sensitivities, 218
Distributed loads, 13
Distributed teams, 259, 266
D matrix, 20
Domain of analysis, 177, 180–184, 192, 195, 205, 238, 317
Domain reduction, 183, 184, 271
Dynamic analysis, 12, 16, 33, 51, 70, 71, 80, 111, 144, 184, 231
Dynamic displacement field, 64
Dynamic loads, 12, 71, 121, 183, 198, 231, 284
Dynamic modification matrix, 228
Dynamic strains, 59, 64
Dynamic stresses, 144, 228, 233
Eigenvalue, 54, 60, 77, 234
problem, 12, 54, 58, 75, 78, 234
Eigenvector, 54, 61, 73, 109
Elastic behaviour, 9, 216
Elasticity modulus, 169, 221
Electrical networks, 21
Electromagnetic phenomena, 21
Element accuracy, 144
Element coordinate system, 27
Element delivery, 144
Element distortions group 1 (linear), 159
Element distortions group 2
(bi-linear), 160
Element distortions group 3
(quadratic), 161
Element distortions group 4
(cubic and higher order), 162
Element forces, 21, 23, 26, 30, 37
Element loads, 7
Element stiffness matrix, 11, 21, 24,
27, 30, 57, 72, 89, 96, 98, 158, 220
Element types, 3, 29, 140, 145, 152,
162, 177, 253
Elimination of errors, 258, 259
Elliptic membrane, 169
Empirical rules, 130
Encastre’ beam, 180, 222, 223,
324
Energy functional, 80, 88
Entry-into-service, 116, 203, 245
Equilibrium elements, 3, 5
Equilibrium equation, 23
Equivalent work, 34
Error bounding methods, 10
Error bounds on qualification parameters, 303, 345
Error commentary, 303, 344
Error control methodology, 243
Error control procedures, 8
Error controlled finite element analysis, 114
Error identification, 114, 117, 305
Error sources, 15, 17, 114, 133, 155, 176, 208, 241, 250, 260, 330
Error treatment, 9, 126, 127
Error type, 15, 175
Estimated change in element stiffness, 227, 233, 235
Estimating stress accuracy at common node, 154
Executable data files, 252, 253
Existing knowledge, 274
Expensive surprise, 277
Experience, 2, 14, 17, 66, 113, 114, 119, 121, 127, 130, 175, 209, 250, 271, 309, 312, 315, 318, 322, 353
database, 126, 265, 266, 312
gap, 315
Experimental accuracy, 299
Experimental data, 137, 243, 244, 246, 316
Experimental elements, 238
Expert resources, 267
Explicit reference model, 291
Extended domain of analysis, 183
Exterior world, 126
External error sources, 301
External medium, 53

Fabrication, 10
Fail-safe component, 132
Failure mechanism, 131
Failure modes, 136
Failure types, 136
Fatigue life assessment, 132
Feature analysis set-up, 289, 331
Feature level analysis, 278
Feature level assessment, 298
Feature level uncertainties, 287, 293
Feature level uncertainty sources, 287, 298
Feature properties, 179
Feature set, 206
Features
single, 179, 205, 206, 213, 288
five, 206
three, 206
Feedback loops, 9, 115, 140
Fidelity ladder, 8
Final analysis, 299, 300, 310, 319, 332, 337, 338, 340–341
plan, 299, 300, 338
reference model, 297–299
Final assessment, 298
Final reference model, 299
Final results model, 115
Finite differences, 62, 253
Finite element formulation, 4, 19, 21, 88, 122, 133, 151
Finite element library, 251
Finite element method, 1, 3, 13, 20, 21, 29, 52, 79–81, 84, 86, 88, 92–93, 113, 117, 184
Finite element world, 7, 133
Fitness for purpose, 16, 143
Flag assessment, 335
Flagged list of uncertainties, 311
Flags, 258, 266, 274, 288, 293, 296, 300, 313, 315, 320, 327, 330, 335, 344
Flat plate element, 30
Flatness of strain energy curve, 104
Fluid flow, 21
Fluid-structure coupling, 124
Force-balance equilibrium forced responses, 23
Fourier series, 40, 72
Fox, M., 129, 139
Fractional error, 134
Fractional uncertainty, 134, 240
Fraeijs de Veubeke, B., 5
Free surface, 155–157
Free undamped vibrations, 53
Free vibration, 12, 15, 53, 56, 59, 62, 72, 108, 227, 229, 348, 349
analysis loop, 58
Frequencies, 53–54, 56, 59, 68, 75, 80, 108, 227–228, 232, 253, 348, 349, 352
Frequency range, 59, 263
Frequency spectrum, 77
Gas turbine engine, 123
Gaussian integration, 152–153, 161, 164
Gaussian integration points
(Gauss points), 153
Generalised coordinates, 77–78
Generalised load vector, 90
General principle with respect to element distortions, 163
Generated error, 14, 118, 120, 140–141, 143
Geometric non-linearity, 211
Geometric shape, 179
Geometric stiffness matrix, 234–235
Geradin, M., 78
Global assessments, 278, 282, 297, 324, 336
Global coordinate system, 27
Global coordinates, 26
Global level analysis, 295
Global reduced reference finite element model, 282
Global stiffness matrix, 11, 21, 22, 24, 25, 41, 43, 98, 218, 219, 235
Global system, 24, 97, 218
Go/no-go decision, 268, 313
Gödel’s theorem, 10
Gradient information, 236
Graphical user interface, 113
Gravity force, 84
Gurdal, Z., 217
Haftka, R., 217
Hamilton’s principle, 107
Handbooks, 265
Hand calculations, 16
Hard error bound, 133
Harmonic motion, 54, 67
Heat transfer, 21
Hidden information, 151
Hierarchical decomposition, 185, 201
Hierarchical methodology, 16
Hierarchical modeling, 212, 216
Higham, N., 126
High-energy cases, 121
High-fidelity models, 8
Higher vibration modes, 67
Hilburger, M., 11
Homogeneous material, 176, 213
Hooke’s law, 20, 85
Horses for courses, 151, 189
h–p adaptive codes, 173
h-type adaptive codes, 165
Hybrid elements, 3
I-beams, 124
Idealisation process, 7, 15, 16, 92, 125, 177, 249, 297
Idealised model, 115–117, 153, 177
Idealised world, 7, 203
Illustrative connecting rod, 284
Impact of errors, 140, 175, 184, 209, 210, 240, 249, 301, 340
Impact of uncertainties, 176, 178, 271, 277, 283, 291, 301, 347, 348
Implementation plan, 260, 261, 307, 309
Implicit–explicit analysis, 279
Imposing maintenance standards, 293
Inappropriate element shapes, 191
Incomplete knowledge, 119
Indirect evaluation of sensitivities, 236, 237
Indirect sensitivity methods, 16, 240
Inertia characteristics, 8
Inertia loaded spring, 52
Inertia loads, 12, 272, 284
Inexperience, 2, 66, 120, 127, 199
Information accumulation, 268, 315
Initial analysis assessment, 263, 309
Initial assumptions, 140, 177
Initial calculations, 281, 323
Initial considerations, 136, 209, 316
Initial global assessment, 282, 324, 328, 348
Initial review, 205, 266, 277
Initial set of bounds, 135
Initial sizing, 8, 285
Initial steps, 129, 131, 133
Initial uncertainty bounds, 273, 319
In-service failures, 250
In-service operation, 6
In-service structural behaviour, 135
In-service structure, 7, 8, 118, 133, 178, 211, 260, 299, 350
Inter-element compatibility, 5
Interface behaviour, 194, 195
Interface boundaries, 5, 77, 195
Interface boundary nodes, 76
Interior inertia forces, 21
Interior world, 7
Intermediate analysis, 8
Intermediate level global assessment, 297
Intermediate level global reference model, 215
Internal boundaries, 176, 179, 192, 193, 195
Internal company code, 262
Internal damping, 53
Internal error sources, 302
Internal friction, 53
Internal loading actions, 278
Interpolation, 105, 106
Isotropic material, 124, 199, 244
Joints, 5, 124, 136, 166, 238, 245, 273, 284, 310
Kamat, M., 217
Kardestuncer, H., 19, 51
Kinetic energy, 13, 56, 80, 81, 107–111
Knight, N., 11
Lack of experience, 127, 280
Lagrange multipliers, 6
Lagrangian function, 13, 107
Large safety factor, 200, 314
Lateral vision, 17
Legal defence, 129, 256
Level of abstraction, 277, 279, 290, 311, 319, 327, 329, 344
Level of commitment, 277
Levels of fidelity, 8
Limit state, 131, 132
Limiting physical state, 131
Line distribution of displacements, 5
Linear dynamic analysis, 124
Linear interpolation, 105
Linear static analysis, 13, 70, 71, 176, 183, 212, 309
Linear stress variation, 147, 151, 152
Load path, 5, 8, 177, 195, 235, 283, 291
movement, 271
Load-reaction consistency check, 30
Load transfer, 271
Loaded spring combination, 87
Loading, 7, 9, 10, 12, 33, 35, 64, 116, 119, 122, 131, 176, 185, 187, 193, 200, 237, 273, 278, 316, 342
actions, 116, 271–273, 278, 282, 283, 289, 316
Local axis facility, 39
Logical sequence, 9, 273
Loss of applied load, 93
Low-fidelity models, 8
Low-order elements, 8
Lumped loads, 201

MacNeal, R., 144, 155
Maintenance requirement assessment, 335
Manufacturing details, 264
Mass matrix, 51, 52, 108
Master degrees of freedom, 33, 43, 72, 73, 75
Master model, 47
Matching curvature and node positions, 163
Material properties, 119, 198–200
linear dynamics problems, 199
linear static problems, 199
non-linear problems, 199
Material property uncertainty, 198
Mathematical model, 15, 177, 185, 192, 211
Matrix analysis, 19
Maximum deflection of beam, 222
Maximum displacement, 196, 306, 314, 323, 329
Maximum kinetic energy, 56
Maximum natural frequency, 61
Maximum strain energy, 56
Maximum stress, 188, 196, 208, 316, 323
Mean values for stresses, 104
Measurable error, 9
Membrane element, 30, 172, 277
Membrane forces, 234
Memory requirement, 254
Mesh distortion, 155–164
Mesh grading, 155–164
Mesh ladder, 165
Meshed models, 257
Meshed world, 7
Meshing, 117, 143
errors, 155
Minimum natural frequency, 61
Minimum potential energy, 84–86, 88, 98
Minimum weight structure, 262
Mish, K., 10
Missing frequencies, 60
Misunderstandings, 140, 246
Modal analysis, 62–64
Modal analysis with damping, 66–68
Modal damping constant, 67
Modal damping ratio, 68–69
Modal loading function, 64
Modal methods, 64
Modal participation, 64
Modal vector, 54, 57, 63
Mode shape sensitivities, 228, 229
Model assessment, 216
Model build-up, 140
Modelling assumptions, 197, 204, 233
Modification matrix, 220, 222, 224, 225
Modified load vector, 25
Morris, A., 9, 179, 185, 217
Multi-company design, 263
Multi-component structure, 176, 179
Multi-disciplinary analysis, 124
Multi-element arrangement, 22
Multi-stage process, 261
Multiple analysis teams, 12
Multiple symmetry, 39, 71

NAFEMS, 139, 169
NASA, 11
Natural frequency, 54, 57, 61, 227, 228
Negative damping, 70
Nemeth, M., 11
Newmark’s method, 69
Nodal accelerations, 52
Nodal connection quantities, 4, 29, 88, 89
Nodal displacement vector, 52, 62
Nodal displacements, 4, 21, 25, 48, 200
Nodal forces, 21, 27, 28, 55
Nodal rotations, 4, 30
Nodal values, 4, 168, 338
Nodal velocities, 52, 65
Non-homogeneous material, 211
Non-linear analysis, 121, 183, 187
Normalisation process, 56
Normalised mode shapes, 57, 62, 76, 230
Normalised modes, 56, 63, 67, 111
Novelty high level, 116, 121–123, 209
Novelty low level, 116, 121–122
Novelty medium level, 122
Nuclear electric, 130, 204
Nuclear power station, 130
Numerical analysis, 117
Numerical errors, 117
Numerical instabilities, 66

Oden, J., 9
One-dimensional elements, 26
Operational environment, 263
Optimal stress sample points, 152, 153, 164
Orthogonal vectors, 57
Orthotropic plate, 179, 209
Overall accuracy bound, 300
Overall assessment, 293, 334
Overdamping, 68

Partitioned matrix, 41, 77
Partitioned stiffness, matrix, 41, 43, 77
Peer review, 257
Permissible states, 131
Petyt, M., 51, 68, 74
Phase angle, 68
Physically symmetric structure, 33
Plate analysis, 6, 119, 176, 205
Plate bending theory, 119
Plate elements, 320, 321, 324

Plate/shell model, 211
Point-wise convergence, 80, 93
Polynomial approximations, 3
Positive damping, 70
Post-failure behaviour, 131, 132
Post-mesh-generation examination, 173
Potential energy, 13, 80, 82–83, 90, 103
Pre-defined analysis, 292
Pre-defined reference analysis, 292
Preliminary error assessment, 17
Preliminary review, 205
Primitive, 179
Professional test organization, 243
Progressive non-linearity, 211
Propagation bands, 71
Propagation of errors, 10
p-type adaptive codes, 3
Pzemieniecki, J., 20

Quadratic stress variation, 152, 153
Qualification criteria, 2, 130, 133, 329
Qualification information, 262, 299
Qualification objectives, 316
Qualification parameters, 133, 134, 203, 220, 242, 274, 316, 346
Qualification process, 2, 129–132, 205
Qualification requirements, 7, 310
Qualification rules, 130
Quality of results, 139, 168, 169, 250
Quality report, 16, 250, 256–259, 308
Quality system, 129

Rahman, A., 309, 316, 317
Random variability, 119
Rao, S., 64
Rapid re-analysis, 238
Rate of change of buckling load, 217
Rate of change of displacements, 217, 219, 220
Rate of change of frequencies, 217
Rate of change of natural frequency, 228, 230
Rate of change of stresses, 217
Rayleigh quotient, 59, 61–62
Reactions, 26, 30, 46
Real-world, 6, 7, 93, 116, 129, 131, 174, 204, 212, 213
structure, 6, 9, 108, 116, 212
Reduced cost, 250
Reduced finite element reference model, 280, 282, 286, 322
Reduced matrix, 25
Reduced qualification criterion, 268
Reduced real-world, 7
Reference books, 137, 209, 265
Reference model, 134, 212, 218, 289, 290, 321–324
Reference value, 133, 134, 240, 346
Regulated analyses, 250
Regulatory authority, 256
Reissner–Mindlin model, 214
Relative values, 54
Reliable standard, 1
Removal of ambiguities, 243, 244
Repeated symmetry, 39, 71
Required level of accuracy, 15, 17, 135
Response to external loads, 179
Response type, 117, 124, 126, 185
Results accuracy, 316
Results conflict, 283
Results model, 114, 291, 343
Review of available information, 265, 312
Revised design requirements, 268
Revision procedure, 138, 317
Rigid body motion, 21, 56
Rigid body movement, 24, 54, 146, 239
Rigid boundary, 180
Rigid format, 260
Rivet locations, 349
Rivets, 7, 195, 306, 310–312
Roark reference model, 321
Roark’s formulae, 209, 265, 285, 291
Role of testing, 128–129, 242–244
Rolls Royce, 143
Rossettos, J., 5, 81
Rules of thumb, 210, 211
Run-time assessment, 338
SAFESA, 11, 139, 179
Safety critical environment, 125, 130, 245, 250
Safety factor, 7, 132, 200, 314, 315
Sander, G., 5
Scoping information, 282
Scoping the real-world problem, 261–269, 309–312
Sensitivity methods, 16, 216, 217, 244–245
Serviceability limit state, 131
Set-up information, 257, 260, 309
Shanley, F., 312, 313, 323
Shanley reference model, 322
Shape function, 30, 33, 88, 90, 91
Shell analysis, 6
Shell elements, 29, 151, 188
Siemens, 307
Significant thickness, 211
Similarity parameters, 206, 329, 333, 344
Similarity rules, 126, 127
Simple analysis programs, 282
Simple engineering formulae, 134, 209, 210
Single level of decomposition, 193, 206
Single span bridge, 124
Singular matrix, 21, 24, 53
Singularity, 191
Size limitations, 116, 131, 266
Size of modal, 67
Slave degrees of freedom, 72–74
Slender bars, 234
Small thickness, 211
Solid model, 211, 330
Solution process, 49, 63, 117, 251
Solution world, 7
Sophisticated models, 297
Sources of error, 140, 198, 205
Sources of uncertainty, 177, 216, 273, 292
Specified functionality, 262
Spring element, 12, 27, 51, 55
Spurious modes, 191
Stage reports review meetings, 258
Stage reviews, 293, 320
Static analysis illustrative problem, 306
Static condensation process, 77
Statically determinate structure, 222, 242
Step inputs, 269
Step outputs, 269
Step review, 265, 267, 278, 288, 312, 315, 318, 327, 329, 330, 353
Stereotype loads, 7
Stiffened plate, 124
Stiffness matrix, 11, 21, 27, 29, 43, 57, 78, 90
Strain energy, 56, 81–82, 89, 95
Strand 7 code, 172
Stress at a common node, 169, 341
Stress concentration factor, 209
Stress contours, 325
Stress field, 21, 159, 160, 343
Stress gradients, 165, 336, 337
Stress improvement, 104–106
Stress in extreme fibres, 211
Stress intensity factor, 132, 290, 291
Stress jumps, 104, 105, 169
Stress ladder, 164
Strouboulis, T., 3, 167
Structural behaviour, 6, 118, 129, 236, 238, 312
Structural components, 8, 47, 238, 306, 311
Structural design, 6, 8, 125, 135, 243
Structural dimensions, 172, 236, 262
Structural failure, 125, 129, 130, 136
Structural interpretation, 314
Structural optimization, 16, 217, 236
Structural parameters, 8, 218, 236
Structural performance, 15, 130, 177, 283
criteria, 130
Structural properties, 116, 120, 208, 218, 221
Structural theory, 282
Sturm sequence check, 59
Sturm sequence property, 59
Stylised loads, 116
Sub-matrices, 43, 77
Sub-processes, 114, 117, 118, 176
Substructure reference model, 47, 289
Substructures, 12, 76, 217
Superelements, 33, 40, 217, 278
Supporting test specification, 298–299
Supports, 238, 239
Surface crossing, 352
Surface distribution of displacements, 5
Surface separation, 352
Symmetric boundary conditions, 35
Symmetric constraints, 35
Symmetric displacements, 37
Symmetric loads, 33, 34, 38
Symmetric matrix, 21, 24
Symmetry, 33–40
line, 35
System functionality, 252
Systematic errors, 120
Szabó, B., 3, 19, 81, 167, 216
Taig, I., 211
Tangential strains, 156, 157
Target error limits, 226, 233
Taylor, R., 3, 19, 81
Template, 136, 250, 260
Temptations, 46
Termination decisions, 258
Test data, 2, 114, 131, 243, 245, 300
Test engineer, 200, 243, 260, 299
Test errors, 128
Test requirements assessment, 299
Testing the unknown, 245
Theoretical manual, 252
Theory of experimental uncertainty, 246
Thermal analysis, 21
Thermal stress field, 21
Thick beam model, 129
Thin-walled structures, 234
Third party evaluation, 256
Thompson, W., 64
Three-dimensional beam bending element, 30
Three-dimensional elements, 148–151, 192
Through-thickness stress, 188, 211, 214
Time requirement, 254, 255
Tolerances, 135, 203
Tong, P., 5, 81
Torsion bar element, 30
Total analysis process, 14, 275
Touzot, G., 20
Traction boundary, 83, 84
Traction forces, 84
Traction surface, 83, 84
Transformation matrix, 28, 29, 44, 73, 77
Transformed stiffness matrix, 29
Trial functions, 63
Turbulence, 119
Tutorial, 252
Two-dimensional axis system, 27
Two-dimensional elements, 145–148

assessment and bounding, 333
associated with modeling considerations, 192
captured, 225, 258, 297
control methods, 246, 252
identification, 114
list, 266, 313
review, 179, 263, 310, 311
unbounded, 266, 271, 295
Unconditional stability, 69
Undamped system, 52
Underdamping, 67, 68
Underpinning mathematical theory, 251
Unit load, 219, 220, 223, 226
User manual, 252

Validated finite element analysis model, 114
Validation, 135, 253
criterion, 137, 314
process, 137, 243, 274
test, 243, 245–246, 251
Variability, 10, 245
Vector of nodal displacements, 21, 220
Verification, 251, 253
Vignjvec, R., 9, 116, 179, 185, 204
Violation of qualification criteria, 351
Von Mises criterion, 308, 323, 329, 338

Walkthrough, 17, 304, 306, 318, 333, 347
Warren, C., 209, 310, 322
Washizu, K., 81
Weighting functions, 63
Welds, 7, 116
Wrong problem, 111

Young’s modulus, 82, 85, 93, 188, 311, 324
Z-stringer reinforced panel, 188, 304, 307, 310, 316