Contents

Preface XVII

Part I General Aspects of Thermal Process Safety 1

1 Introduction to Risk Analysis of Fine Chemical Processes 3
1.1 Introduction 3
1.2 Chemical Industry and Safety 4
1.2.1 Chemical Industry and Society 4
1.2.1.1 Product Safety 4
1.2.1.2 Process Safety 5
1.2.1.3 Accidents in Chemical Industry 5
1.2.1.4 Risk Perception 5
1.2.2 Responsibility 6
1.2.3 Definitions and Concepts 7
1.2.3.1 Hazard 7
1.2.3.2 Risk 7
1.2.3.3 Safety 8
1.2.3.4 Security 8
1.2.3.5 Accepted Risk 8
1.3 Risk Analysis 8
1.3.1 Steps of Risk Analysis 8
1.3.1.1 Scope of Analysis 9
1.3.1.2 Safety Data Collection 10
1.3.1.3 Safe Conditions and Critical Limits 10
1.3.1.4 Search for Deviations 10
1.3.1.5 Risk Assessment 12
1.3.1.6 Risk Profiles 14
1.3.1.7 Risk Reducing Measures 14
1.3.1.8 Residual Risk 16
1.4 Safety Data 17
1.4.1.1 Physical Properties 17
1.4.1.2 Chemical Properties 17
2 Fundamentals of Thermal Process Safety 31
2.1 Introduction 33
2.2 Energy Potential 34
2.2.1 Thermal Energy 34
2.2.1.1 Heat of Reaction 34
2.2.1.2 Heat of Decomposition 35
2.2.1.3 Heat Capacity 35
2.2.1.4 Adiabatic Temperature Rise 37
2.2.2 Pressure Effects 38
2.2.2.1 Gas Release 39
2.2.2.2 Vapor Pressure 39
2.2.2.3 Amount of Solvent Evaporated 39
2.3 Effect of Temperature on Reaction Rate 40
2.3.1 Single Reaction 40
2.3.2 Multiple Reactions 41
2.4 Heat Balance 42
2.4.1 Terms of the Heat Balance 42
2.4.1.1 Heat Production 43
2.4.1.2 Heat Removal 43
2.4.1.3 Heat Accumulation 45
2.4.1.4 Convective Heat Exchange Due to Mass Flow 46
2.4.1.5 Sensible Heat Due to Feed 46
2.4.1.6 Stirrer 46
2.4.1.7 Heat Losses 47
2.4.2 Simplified Expression of the Heat Balance 48
2.4.3 Reaction Rate under Adiabatic Conditions 48
2.5 Runaway Reactions 50
2.5.1 Thermal Explosions 50
2.5.2 Semenov Diagram 50
2.5.3 Parametric Sensitivity 52
2.5.4 Critical Temperature 52
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5.5 Time Frame of a Thermal Explosion, the TMR\textsubscript{ad} Concept</td>
<td>54</td>
</tr>
<tr>
<td>2.6 Exercises</td>
<td>56</td>
</tr>
<tr>
<td>References</td>
<td>58</td>
</tr>
<tr>
<td>3 Assessment of Thermal Risks</td>
<td>59</td>
</tr>
<tr>
<td>3.1 Introduction</td>
<td>59</td>
</tr>
<tr>
<td>3.2 Thermal Risks</td>
<td>60</td>
</tr>
<tr>
<td>3.3 Systematic Assessment Procedure</td>
<td>61</td>
</tr>
<tr>
<td>3.3.1 Cooling Failure Scenario</td>
<td>61</td>
</tr>
<tr>
<td>3.3.2 Severity</td>
<td>64</td>
</tr>
<tr>
<td>3.3.3 Probability</td>
<td>66</td>
</tr>
<tr>
<td>3.3.4 Criticality of Chemical Processes</td>
<td>67</td>
</tr>
<tr>
<td>3.3.5 Assessment of the Criticality</td>
<td>67</td>
</tr>
<tr>
<td>3.3.6 Criticality Classes</td>
<td>68</td>
</tr>
<tr>
<td>3.3.6.1 Criticality Class 1</td>
<td>69</td>
</tr>
<tr>
<td>3.3.6.2 Criticality Class 2</td>
<td>69</td>
</tr>
<tr>
<td>3.3.6.3 Criticality Class 3</td>
<td>70</td>
</tr>
<tr>
<td>3.3.6.4 Criticality Class 4</td>
<td>70</td>
</tr>
<tr>
<td>3.3.6.5 Criticality Class 5</td>
<td>70</td>
</tr>
<tr>
<td>3.3.6.6 Remarks Concerning the Use of MTT as a Safety Barrier</td>
<td>71</td>
</tr>
<tr>
<td>3.4 Assessment Procedures</td>
<td>71</td>
</tr>
<tr>
<td>3.4.1 General Rules for Thermal Safety Assessment</td>
<td>71</td>
</tr>
<tr>
<td>3.4.2 Practical Procedure for the Assessment of Thermal Risks</td>
<td>72</td>
</tr>
<tr>
<td>3.5 Exercises</td>
<td>78</td>
</tr>
<tr>
<td>References</td>
<td>80</td>
</tr>
<tr>
<td>4 Experimental Techniques</td>
<td>81</td>
</tr>
<tr>
<td>4.1 Introduction</td>
<td>82</td>
</tr>
<tr>
<td>4.2 Calorimetric Measurement Principles</td>
<td>82</td>
</tr>
<tr>
<td>4.2.1 Classification of Calorimeters</td>
<td>82</td>
</tr>
<tr>
<td>4.2.2 Operating Modes of Calorimeters</td>
<td>83</td>
</tr>
<tr>
<td>4.2.3 Heat Balance in Calorimeters</td>
<td>84</td>
</tr>
<tr>
<td>4.2.3.1 Ideal Accumulation</td>
<td>85</td>
</tr>
<tr>
<td>4.2.3.2 Ideal Heat Flow</td>
<td>85</td>
</tr>
<tr>
<td>4.2.3.3 Isoperibolic Methods</td>
<td>85</td>
</tr>
<tr>
<td>4.3 Choice of Instruments Used in Safety Laboratories</td>
<td>85</td>
</tr>
<tr>
<td>4.3.1 Adiabatic Calorimeters</td>
<td>86</td>
</tr>
<tr>
<td>4.3.1.1 On the Evaluation of Adiabatic Experiments</td>
<td>86</td>
</tr>
<tr>
<td>4.3.1.2 Dewar Calorimeters</td>
<td>88</td>
</tr>
<tr>
<td>4.3.1.3 Accelerating Rate Calorimeter (ARC)</td>
<td>89</td>
</tr>
<tr>
<td>4.3.2 Micro Calorimeters</td>
<td>90</td>
</tr>
<tr>
<td>4.3.2.1 Differential Scanning Calorimetry (DSC)</td>
<td>90</td>
</tr>
<tr>
<td>4.3.2.2 Calvet Calorimeters</td>
<td>92</td>
</tr>
<tr>
<td>4.3.2.3 Thermal Activity Monitor</td>
<td>94</td>
</tr>
<tr>
<td>4.3.3 Reaction Calorimeters</td>
<td>95</td>
</tr>
</tbody>
</table>
Part II Mastering Exothermal Reactions 101

5 General Aspects of Reactor Safety 103
5.1 Introduction 104
5.2 Dynamic Stability of Reactors 105
5.2.1 Parametric Sensitivity 105
5.2.2 Sensitivity Towards Temperature: Reaction Number B 105
5.2.3 Heat Balance 107
5.2.3.1 The Semenov Criterion 107
5.2.3.2 Stability Diagrams 107
5.2.3.3 Heat Release Rate and Cooling Rate 107
5.2.3.4 Using Dimensionless Criteria 109
5.2.3.5 Chaos Theory and Lyapunov Exponents 110
5.2.4 Reactor Safety After a Cooling Failure 111
5.2.4.1 Potential of the Reaction, the Adiabatic Temperature Rise 111
5.2.4.2 Temperature in Cases of Cooling Failure: The Concept of MTSR 112
5.3 Example 112
5.3.1 Example Reaction System 112
References 116

6 Batch Reactors 119
6.1 Introduction 120
6.2 Principles of Batch Reaction 121
6.2.1 Introduction 121
6.2.2 Mass Balance 121
6.2.3 Heat Balance 122
6.3 Strategies of Temperature Control 123
6.4 Isothermal Reactions 123
6.4.1 Principles 123
6.4.2 Design of Safe Isothermal Reactors 123
6.4.3 Safety Assessment 127
6.5 Adiabatic Reaction 127
6.5.1 Principles 127
6.5.2 Design of a Safe Adiabatic Batch Reactor 128
6.5.3 Safety Assessment 128
6.6 Polytropic Reaction 128
6.6.1 Principles 128
6.6.2 Design of Polytropic Operation, Temperature Control 130
6.6.3 Safety Assessment 133
6.7 Isoperibolic Reaction 133
6.7.1 Principles 133
6.7.2 Design of Isoperibolic Operation, Temperature Control 134
6.7.3 Safety Assessment 134
6.8 Temperature Controlled Reaction 135
6.8.1 Principles 135
6.8.2 Design of Temperature Controlled Reaction 135
6.8.3 Safety Assessment 136
6.9 Key Factors for the Safe Design of Batch Reactors 138
6.9.1 Determination of Safety Relevant Data 138
6.9.2 Rules for Safe Operation of Batch Reactors 141
6.10 Exercises 144

References 146

7 Semi-batch Reactors 147
7.1 Introduction 148
7.2 Principles of Semi-batch Reaction 149
7.2.1 Definition of Semi-batch Operation 149
7.2.2 Material Balance 149
7.2.3 Heat Balance of Semi-batch Reactors 151
7.2.3.1 Heat Production 151
7.2.3.2 Thermal Effect of the Feed 151
7.2.3.3 Heat Removal 151
7.2.3.4 Heat Accumulation 152
7.3 Reactant Accumulation in Semi-batch Reactors 153
7.3.1 Fast Reactions 153
7.3.2 Slow Reactions 156
7.4 Design of Safe Semi-batch Reactors 158
7.5 Isothermal Reaction 159
7.5.1 Principles of Isothermal Semi-batch Operation 159
7.5.2 Design of Isothermal Semi-batch Reactors 159
7.6 Isoperibolic, Constant Cooling Medium Temperature 163
7.7 Non-isothermal Reaction 166
7.8 Strategies of Feed Control 167
7.8.1 Addition by Portions 167
7.8.2 Constant Feed Rate 167
7.8.3 Interlock of Feed with Temperature 169
7.8.4 Why to Reduce the Accumulation 170
7.9 Choice of Temperature and Feed Rate 171
7.10 Feed Control by Accumulation 173
7.11 Exercises 176
References 178

8 Continuous Reactors 179
8.1 Introduction 180
8.2 Continuous Stirred Tank Reactors 180
8.2.1 Mass Balance 181
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.2.2</td>
<td>Heat Balance</td>
<td>182</td>
</tr>
<tr>
<td>8.2.3</td>
<td>Cooled CSTR</td>
<td>182</td>
</tr>
<tr>
<td>8.2.4</td>
<td>Adiabatic CSTR</td>
<td>183</td>
</tr>
<tr>
<td>8.2.5</td>
<td>The Autothermal CSTR</td>
<td>185</td>
</tr>
<tr>
<td>8.2.6</td>
<td>Safety Aspects</td>
<td>185</td>
</tr>
<tr>
<td>8.2.6.1</td>
<td>Instabilities at Start-up or Shut Down</td>
<td>185</td>
</tr>
<tr>
<td>8.2.6.2</td>
<td>Behavior in Case of Cooling Failure</td>
<td>186</td>
</tr>
<tr>
<td>8.3</td>
<td>Tubular Reactors</td>
<td>189</td>
</tr>
<tr>
<td>8.3.1</td>
<td>Mass Balance</td>
<td>189</td>
</tr>
<tr>
<td>8.3.2</td>
<td>Heat Balance</td>
<td>190</td>
</tr>
<tr>
<td>8.3.3</td>
<td>Safety Aspects</td>
<td>192</td>
</tr>
<tr>
<td>8.3.3.1</td>
<td>Parametric Sensitivity</td>
<td>192</td>
</tr>
<tr>
<td>8.3.3.2</td>
<td>Heat Exchange Capacities of Tubular Reactors</td>
<td>193</td>
</tr>
<tr>
<td>8.3.3.3</td>
<td>Passive Safety Aspects of Tubular Reactors</td>
<td>193</td>
</tr>
<tr>
<td>8.4</td>
<td>Other Continuous Reactor Types</td>
<td>198</td>
</tr>
<tr>
<td>8.4.1.1</td>
<td>Cascade of CSTRs and Recycle Reactor</td>
<td>198</td>
</tr>
<tr>
<td>8.4.1.2</td>
<td>Micro Reactors</td>
<td>199</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>201</td>
</tr>
</tbody>
</table>

Technical Aspects of Reactor Safety 203

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>9.1</td>
<td>Introduction</td>
<td>204</td>
</tr>
<tr>
<td>9.2</td>
<td>Temperature Control of Industrial Reactors</td>
<td>205</td>
</tr>
<tr>
<td>9.2.1</td>
<td>Technical Heat Carriers</td>
<td>205</td>
</tr>
<tr>
<td>9.2.1.1</td>
<td>Steam Heating</td>
<td>205</td>
</tr>
<tr>
<td>9.2.1.2</td>
<td>Hot Water Heating</td>
<td>206</td>
</tr>
<tr>
<td>9.2.1.3</td>
<td>Other Heating Media</td>
<td>207</td>
</tr>
<tr>
<td>9.2.1.4</td>
<td>Electrical Heating</td>
<td>207</td>
</tr>
<tr>
<td>9.2.1.5</td>
<td>Cooling with Ice</td>
<td>207</td>
</tr>
<tr>
<td>9.2.1.6</td>
<td>Other Heat Carriers for Cooling</td>
<td>207</td>
</tr>
<tr>
<td>9.2.2</td>
<td>Heating and Cooling Techniques</td>
<td>208</td>
</tr>
<tr>
<td>9.2.2.1</td>
<td>Direct Heating and Cooling</td>
<td>208</td>
</tr>
<tr>
<td>9.2.2.2</td>
<td>Indirect Heating and Cooling of Stirred Tank Reactors</td>
<td>208</td>
</tr>
<tr>
<td>9.2.2.3</td>
<td>Single Heat Carrier Circulation Systems</td>
<td>209</td>
</tr>
<tr>
<td>9.2.2.4</td>
<td>Secondary Circulation Loop Temperature Control Systems</td>
<td>211</td>
</tr>
<tr>
<td>9.2.3</td>
<td>Temperature Control Strategies</td>
<td>212</td>
</tr>
<tr>
<td>9.2.3.1</td>
<td>Isoperibolic Temperature Control</td>
<td>212</td>
</tr>
<tr>
<td>9.2.3.2</td>
<td>Isothermal Control</td>
<td>212</td>
</tr>
<tr>
<td>9.2.3.3</td>
<td>Isothermal Control at Reflux</td>
<td>214</td>
</tr>
<tr>
<td>9.2.3.4</td>
<td>Non Isothermal Temperature Control</td>
<td>215</td>
</tr>
<tr>
<td>9.2.4</td>
<td>Dynamic Aspects of Heat Exchange Systems</td>
<td>215</td>
</tr>
<tr>
<td>9.2.4.1</td>
<td>Thermal Time Constant</td>
<td>215</td>
</tr>
<tr>
<td>9.2.4.2</td>
<td>Heating and Cooling Time</td>
<td>217</td>
</tr>
<tr>
<td>9.2.4.3</td>
<td>Cascade Controller</td>
<td>219</td>
</tr>
<tr>
<td>9.3</td>
<td>Heat Exchange Across the Wall</td>
<td>219</td>
</tr>
<tr>
<td>9.3.1</td>
<td>Two Film Theory</td>
<td>219</td>
</tr>
</tbody>
</table>

References 201
9.3.2 The Internal Film Coefficient of a Stirred Tank 220
9.3.3 Determination of the Internal Film Coefficient 221
9.3.4 The Resistance of the Equipment to Heat Transfer 222
9.3.5 Practical Determination of Heat Transfer Coefficients 224
9.4 Evaporative Cooling 226
9.4.1 Amount of Solvent Evaporated 228
9.4.2 Vapor Flow Rate and Rate of Evaporation 228
9.4.3 Flooding of the Vapor Tube 229
9.4.4 Swelling of the Reaction Mass 230
9.4.5 Practical Procedure for the Assessment of Reactor Safety at the Boiling Point 231
9.5 Dynamics of the Temperature Control System and Process Design 233
9.5.1 Background 233
9.5.2 Modeling the Dynamic Behavior of Industrial Reactors 234
9.5.3 Experimental Simulation of Industrial Reactors 234
9.6 Exercises 236
References 240

10 Risk Reducing Measures 241
10.1 Introduction 243
10.2 Strategies of Choice 243
10.3 Eliminating Measures 244
10.4 Technical Preventing Measures 245
10.4.1 Control of Feed 245
10.4.2 Emergency Cooling 246
10.4.3 Quenching and Flooding 247
10.4.4 Dumping 248
10.4.5 Controlled Depressurization 248
10.4.6 Alarm Systems 251
10.4.7 Time Factor 252
10.5 Emergency Measures 253
10.5.1 Emergency Pressure Relief 253
10.5.1.1 Definition of the Relief Scenario 254
10.5.1.2 Design of the Relief Device 255
10.5.1.3 Design of Relief Devices for Multipurpose Reactors 255
10.5.1.4 Design of the Effluent Treatment System 256
10.5.2 Containment 256
10.6 Design of Technical Measures 257
10.6.1 Consequences of Runaway 257
10.6.1.1 Temperature 257
10.6.1.2 Pressure 258
10.6.1.3 Release 258
10.6.1.4 Closed Gassy Systems 258
10.6.1.5 Closed Vapor Systems 259
10.6.1.6 Open Gassy Systems 259
10.6.1.7 Open Vapor Systems 259
10.6.1.8 Extended Assessment Criteria for Severity 260
10.6.2 Controllability 260
10.6.2.1 Activity of the Main Reaction 261
10.6.2.2 Activity of Secondary Reactions 261
10.6.2.3 Gas Release Rate 262
10.6.2.4 Vapor Release Rate 262
10.6.2.5 Extended Assessment Criteria for the Controllability 263
10.6.3 Assessment of Severity and Probability for the Different Criticality Classes 264
10.6.3.1 Criticality Class 1 264
10.6.3.2 Criticality Class 2 264
10.6.3.3 Criticality Class 3 265
10.6.3.4 Criticality Class 4 266
10.6.3.5 Criticality Class 5 267
10.6.4 Protection System Based on Risk Assessment 273
10.6.4.1 Risk Assessment 273
10.6.4.2 Determination of the Required Reliability for Safety Instrumented Systems 273
10.7 Exercises 274
References 276

Part III Avoiding Secondary Reactions 279

11 Thermal Stability 281
11.1 Introduction 282
11.2 Thermal Stability and Secondary Decomposition Reactions 282
11.3 Consequences of Secondary Reactions 284
11.3.1 Stoichiometry of Decomposition Reactions 284
11.3.2 Estimation of Decomposition Energies 284
11.3.3 Decomposition Energy 284
11.4 Triggering Conditions 286
11.4.1 Onset: A Concept without Scientific Base 286
11.4.2 Decomposition Kinetics, the TMRad Concept 287
11.4.2.1 Determination of \(q' = f(T) \) from Isothermal Experiments 288
11.4.2.2 Determination of \(T_{D24} \) 290
11.4.2.3 Estimation of \(T_{D24} \) from One Dynamic DSC Experiment 290
11.4.2.4 Empirical Rules for the Determination of a “Safe” Temperature 294
11.4.3 Complex Secondary Reactions 295
11.4.3.1 Determination of \(TM_{Rad} \) from Isothermal Experiments 296
11.4.3.2 Determination of \(q' = f(T) \) from Dynamic Experiments 296
11.5 Experimental Characterization of Decomposition Reactions 298
11.5.1 Experimental Techniques 298
11.5.2 Choosing the Sample to be Analysed 299
12 Autocatalytic Reactions 311
12.1 Introduction 312
12.2 Autocatalytic Decompositions 312
12.2.1 Definitions 312
12.2.1.1 Autocatalysis 312
12.2.1.2 Induction Time 313
12.2.2 Behavior of Autocatalytic Reactions 313
12.2.3 Rate Equations of Autocatalytic Reactions 315
12.2.3.1 The Prout–Tompkins Model 315
12.2.3.2 The Benito–Perez Model 316
12.2.3.3 The Berlin Model 317
12.2.4 Phenomenological Aspects of Autocatalytic Reactions 318
12.3 Characterization of Autocatalytic Reactions 319
12.3.1 Chemical Characterization 319
12.3.2 Characterization by Dynamic DSC 320
12.3.2.1 Peak Aspect in Dynamic DSC 320
12.3.2.2 Quantitative Characterization of the Peak Aspect 321
12.3.2.3 Characterization by Isothermal DSC 322
12.3.2.4 Characterization Using Zero-order Kinetics 323
12.3.2.5 Characterization Using a Mechanistic Approach 324
12.3.2.6 Characterization by Isoconversional Methods 324
12.3.2.7 Characterization by Adiabatic Calorimetry 325
12.4 Practical Safety Aspects for Autocatalytic Reactions 325
12.4.1 Specific Safety Aspects of Autocatalytic Reactions 325
12.4.2 Assessment Procedure for Autocatalytic Decompositions 331
12.5 Exercises 332
References 333

13 Heat Confinement 335
13.1 Introduction 335
13.2 Heat Accumulation Situations 336
13.3 Heat Balance 337
13.3.1 Heat Balance Using Time Scale 338
13.3.2 Forced Convection, Semenov Model 338
13.3.3 Natural Convection 340
Contents

13.3.4 High Viscosity Liquids and Solids 341
13.4 Heat Balance with Reactive Material 343
13.4.1 Conduction in a Reactive Solid with a Heat Source, Frank-Kamenetskii Model 344
13.4.2 Conduction in a Reactive Solid with Temperature Gradient at the Wall, Thomas Model 348
13.4.3 Conduction in a Reactive Solid with Formal Kinetics, Finite Elements Model 350
13.5 Assessing Heat Accumulation Conditions 351
13.6 Exercises 357
References 359

14 Symbols 361

Index 367