CONTENTS

1 INTRODUCTION AND OVERVIEW OF MANUFACTURING 1
1.1 What is Manufacturing? 1
1.2 Materials in Manufacturing 6
1.3 Manufacturing Processes 9
1.4 Production Systems 14
1.5 Manufacturing Economics 17

Part I Engineering Materials and Product Attributes 25

2 THE NATURE OF MATERIALS 25
2.1 Atomic Structure and the Elements 25
2.2 Bonding between Atoms and Molecules 28
2.3 Crystalline Structures 30
2.4 Noncrystalline (Amorphous) Structures 35
2.5 Engineering Materials 36

3 MECHANICAL PROPERTIES OF MATERIALS 39
3.1 Stress–Strain Relationships 39
3.2 Hardness 52
3.3 Effect of Temperature on Properties 56
3.4 Fluid Properties 58
3.5 Viscoelastic Behavior of Polymers 60

4 PHYSICAL PROPERTIES OF MATERIALS 65
4.1 Volumetric and Melting Properties 65
4.2 Thermal Properties 68
4.3 Mass Diffusion 69
4.4 Electrical Properties 71
4.5 Electrochemical Processes 73

5 ENGINEERING MATERIALS 76
5.1 Metals and Their Alloys 76
5.2 Ceramics 88

5.3 Polymers 94
5.4 Composite Materials 101

6 DIMENSIONS, SURFACES, AND THEIR MEASUREMENT 107
6.1 Dimensions, Tolerances, and Related Attributes 107
6.2 Conventional Measuring Instruments and Gages 108
6.3 Surfaces 115
6.4 Measurement of Surfaces 119
6.5 Effect of Manufacturing Processes 121

Part II Solidification Processes 124

7 FUNDAMENTALS OF METAL CASTING 124
7.1 Overview of Casting Technology 125
7.2 Heating and Pouring 127
7.3 Solidification and Cooling 131

8 METAL CASTING PROCESSES 141
8.1 Sand Casting 141
8.2 Other Expendable-Mold Casting Processes 145
8.3 Permanent-Mold Casting Processes 150
8.4 Foundry Practice 158
8.5 Casting Quality 162
8.6 Castability and Casting Metals 164
8.7 Product Design Considerations 165

9 GLASSWORKING 169
9.1 Raw Materials Preparation and Melting 169
9.2 Shaping Processes in Glassworking 170
9.3 Heat Treatment and Finishing 175
9.4 Product Design Considerations 176
<table>
<thead>
<tr>
<th>Part</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>SHAPING PROCESSES FOR PLASTICS</td>
<td>178-218</td>
</tr>
<tr>
<td>10.1</td>
<td>Properties of Polymer Melts</td>
<td>179</td>
</tr>
<tr>
<td>10.2</td>
<td>Extrusion</td>
<td>181</td>
</tr>
<tr>
<td>10.3</td>
<td>Production of Sheet and Film</td>
<td>190</td>
</tr>
<tr>
<td>10.4</td>
<td>Fiber and Filament Production (Spinning)</td>
<td>193</td>
</tr>
<tr>
<td>10.5</td>
<td>Coating Processes</td>
<td>194</td>
</tr>
<tr>
<td>10.6</td>
<td>Injection Molding</td>
<td>195</td>
</tr>
<tr>
<td>10.7</td>
<td>Compression and Transfer Molding</td>
<td>205</td>
</tr>
<tr>
<td>10.8</td>
<td>Blow Molding and Rotational Molding</td>
<td>207</td>
</tr>
<tr>
<td>10.9</td>
<td>Thermoforming</td>
<td>212</td>
</tr>
<tr>
<td>10.10</td>
<td>Casting</td>
<td>216</td>
</tr>
<tr>
<td>10.11</td>
<td>Polymer Foam Processing and Forming</td>
<td>217</td>
</tr>
<tr>
<td>10.12</td>
<td>Product Design Considerations</td>
<td>218</td>
</tr>
<tr>
<td>11</td>
<td>PROCESSING OF POLYMER MATRIX COMPOSITES AND RUBBER</td>
<td>223-242</td>
</tr>
<tr>
<td>11.1</td>
<td>Overview of PMC Processing</td>
<td>223</td>
</tr>
<tr>
<td>11.2</td>
<td>Open-Mold Processes</td>
<td>227</td>
</tr>
<tr>
<td>11.3</td>
<td>Closed-Mold Processes</td>
<td>231</td>
</tr>
<tr>
<td>11.4</td>
<td>Other PMC Shaping Processes</td>
<td>233</td>
</tr>
<tr>
<td>11.5</td>
<td>Rubber Processing and Shaping</td>
<td>237</td>
</tr>
<tr>
<td>11.6</td>
<td>Manufacture of Tires and Other Rubber Products</td>
<td>242</td>
</tr>
<tr>
<td>Part III</td>
<td>Particulate Processing of Metals and Ceramics</td>
<td>247-278</td>
</tr>
<tr>
<td>12</td>
<td>POWDER METALLURGY</td>
<td>247-263</td>
</tr>
<tr>
<td>12.1</td>
<td>Characterization of Engineering Powders</td>
<td>248</td>
</tr>
<tr>
<td>12.2</td>
<td>Production of Metallic Powders</td>
<td>252</td>
</tr>
<tr>
<td>12.3</td>
<td>Conventional Pressing and Sintering</td>
<td>254</td>
</tr>
<tr>
<td>12.4</td>
<td>Alternative Pressing and Sintering Techniques</td>
<td>260</td>
</tr>
<tr>
<td>12.5</td>
<td>Materials and Products for Powder Metallurgy</td>
<td>262</td>
</tr>
<tr>
<td>12.6</td>
<td>Design Considerations in Powder Metallurgy</td>
<td>263</td>
</tr>
<tr>
<td>13</td>
<td>PROCESSING OF CERAMICS AND CERMETS</td>
<td>268-280</td>
</tr>
<tr>
<td>13.1</td>
<td>Processing of Traditional Ceramics</td>
<td>268</td>
</tr>
<tr>
<td>13.2</td>
<td>Processing of New Ceramics</td>
<td>275</td>
</tr>
<tr>
<td>13.3</td>
<td>Processing of Cermets</td>
<td>278</td>
</tr>
<tr>
<td>13.4</td>
<td>Product Design Considerations</td>
<td>280</td>
</tr>
<tr>
<td>Part IV</td>
<td>Metal Forming and Sheet Metalworking</td>
<td>282-317</td>
</tr>
<tr>
<td>14</td>
<td>FUNDAMENTALS OF METAL FORMING</td>
<td>282-290</td>
</tr>
<tr>
<td>14.1</td>
<td>Overview of Metal Forming</td>
<td>282</td>
</tr>
<tr>
<td>14.2</td>
<td>Material Behavior in Metal Forming</td>
<td>285</td>
</tr>
<tr>
<td>14.3</td>
<td>Temperature in Metal Forming</td>
<td>286</td>
</tr>
<tr>
<td>14.4</td>
<td>Strain Rate Sensitivity</td>
<td>288</td>
</tr>
<tr>
<td>14.5</td>
<td>Friction and Lubrication in Metal Forming</td>
<td>290</td>
</tr>
<tr>
<td>15</td>
<td>BULK DEFORMATION PROCESSES IN METAL WORKING</td>
<td>293-317</td>
</tr>
<tr>
<td>15.1</td>
<td>Rolling</td>
<td>293</td>
</tr>
<tr>
<td>15.2</td>
<td>Forging</td>
<td>302</td>
</tr>
<tr>
<td>15.3</td>
<td>Extrusion</td>
<td>317</td>
</tr>
<tr>
<td>15.4</td>
<td>Wire and Bar Drawing</td>
<td>327</td>
</tr>
<tr>
<td>16</td>
<td>SHEET METALWORKING</td>
<td>336-363</td>
</tr>
<tr>
<td>16.1</td>
<td>Cutting Operations</td>
<td>336</td>
</tr>
<tr>
<td>16.2</td>
<td>Bending Operations</td>
<td>343</td>
</tr>
<tr>
<td>16.3</td>
<td>Drawing</td>
<td>347</td>
</tr>
<tr>
<td>16.4</td>
<td>Dies and Presses for Sheet Metal Processes</td>
<td>354</td>
</tr>
<tr>
<td>16.5</td>
<td>Other Sheet-Metal-Forming Operations</td>
<td>360</td>
</tr>
<tr>
<td>16.6</td>
<td>Sheet Metal Operations Not Performed on Presses</td>
<td>363</td>
</tr>
<tr>
<td>16.7</td>
<td>Bending of Tube Stock</td>
<td>368</td>
</tr>
<tr>
<td>Part V</td>
<td>Material Removal Processes</td>
<td>372-403</td>
</tr>
<tr>
<td>17</td>
<td>THEORY OF METAL MACHINING</td>
<td>372-388</td>
</tr>
<tr>
<td>17.1</td>
<td>Overview of Machining Technology</td>
<td>374</td>
</tr>
<tr>
<td>17.2</td>
<td>Theory of Chip Formation in Metal Machining</td>
<td>377</td>
</tr>
<tr>
<td>17.3</td>
<td>Force Relationships and the Merchant Equation</td>
<td>381</td>
</tr>
<tr>
<td>17.4</td>
<td>Power and Energy Relationships in Machining</td>
<td>386</td>
</tr>
<tr>
<td>17.5</td>
<td>Cutting Temperature</td>
<td>388</td>
</tr>
<tr>
<td>18</td>
<td>MACHINING OPERATIONS AND MACHINE TOOLS</td>
<td>392-403</td>
</tr>
<tr>
<td>18.1</td>
<td>Machining and Part Geometry</td>
<td>392</td>
</tr>
<tr>
<td>18.2</td>
<td>Turning and Related Operations</td>
<td>395</td>
</tr>
<tr>
<td>18.3</td>
<td>Drilling and Related Operations</td>
<td>403</td>
</tr>
</tbody>
</table>
18.4 Milling 408
18.5 Machining Centers and Turning Centers 415
18.6 Other Machining Operations 417
18.7 Machining Operations for Special Geometries 422
18.8 High-Speed Machining 428

19 CUTTING-TOOL TECHNOLOGY 432
19.1 Tool Life 432
19.2 Tool Materials 438
19.3 Tool Geometry 445
19.4 Cutting Fluids 455

20 ECONOMIC AND PRODUCT DESIGN CONSIDERATIONS IN MACHINING 460
20.1 Machinability 460
20.2 Tolerances and Surface Finish 461
20.3 Machining Economics 466
20.4 Product Design Considerations in Machining 472

21 GRINDING AND OTHER ABRASIVE PROCESSES 476
21.1 Grinding 476
21.2 Related Abrasive Processes 492

22 NONTRADITIONAL MACHINING AND THERMAL CUTTING PROCESSES 497
22.1 Mechanical Energy Processes 498
22.2 Electrochemical Machining Processes 501
22.3 Thermal Energy Processes 505
22.4 Chemical Machining 514
22.5 Application Considerations 519

Part VI Property-Enhancing and Surface Processing Operations 523

23 HEAT TREATMENT OF METALS 523
23.1 Annealing 523
23.2 Martensite Formation in Steel 524
23.3 Precipitation Hardening 528
23.4 Surface Hardening 529
23.5 Heat Treatment Methods and Facilities 530

24 SURFACE PROCESSING OPERATIONS 534
24.1 Industrial Cleaning Processes 534
24.2 Diffusion and Ion Implantation 538
24.3 Plating and Related Processes 539
24.4 Conversion Coating 543
24.5 Vapor Deposition Processes 544
24.6 Organic Coatings 550
24.7 Porcelain Enameling and Other Ceramic Coatings 552
24.8 Thermal and Mechanical Coating Processes 553

Part VII Joining and Assembly Processes 556

25 FUNDAMENTALS OF WELDING 556
25.1 Overview of Welding Technology 557
25.2 The Weld Joint 559
25.3 Physics of Welding 562
25.4 Features of a Fusion-Welded Joint 565

26 WELDING PROCESSES 569
26.1 Arc Welding 569
26.2 Resistance Welding 578
26.3 Oxyfuel Gas Welding 585
26.4 Other Fusion-Welding Processes 589
26.5 Solid-State Welding 591
26.6 Weld Quality 597
26.7 Weldability 601
26.8 Design Considerations in Welding 602

27 BRAZING, SOLDERING, AND ADHESIVE BONDING 605
27.1 Brazing 605
27.2 Soldering 610
27.3 Adhesive Bonding 614

28 MECHANICAL ASSEMBLY 620
28.1 Threaded Fasteners 620
28.2 Rivets and Eyelets 627
28.3 Assembly Methods Based on Interference Fits 628
28.4 Other Mechanical Fastening Methods 631
28.5 Molding Inserts and Integral Fasteners 632
28.6 Design for Assembly 633

Part VIII Special Processing and Assembly Technologies 638

29 RAPID PROTOTYPING AND ADDITIVE MANUFACTURING 638
29.1 Fundamentals of Rapid Prototyping and Additive Manufacturing 639
29.2 Additive Manufacturing Processes 641
29.3 Cycle Time and Cost Analysis 648
29.4 Additive Manufacturing Applications 652

30 PROCESSING OF INTEGRATED CIRCUITS 656
30.1 Overview of IC Processing 657
30.2 Silicon Processing 660
30.3 Lithography 665
30.4 Layer Processes Used in IC Fabrication 669
30.5 Integrating the Fabrication Steps 675
30.6 IC Packaging 677
30.7 Yields in IC Processing 681

31 ELECTRONICS ASSEMBLY AND PACKAGING 686
31.1 Electronics Packaging 686
31.2 Printed Circuit Boards 688
31.3 Printed Circuit Board Assembly 695
31.4 Electrical Connector Technology 702

32 MICROFABRICATION TECHNOLOGIES 707
32.1 Microsystem Products 707
32.2 Microfabrication Processes 710

33 NANOFABRICATION TECHNOLOGIES 719
33.1 Nanotechnology Products and Applications 719
33.2 Introduction to Nanoscience 723
33.3 Nanofabrication Processes 727

Part IX Manufacturing Systems 734

34 AUTOMATION TECHNOLOGIES FOR MANUFACTURING SYSTEMS 734
34.1 Automation Fundamentals 734
34.2 Hardware for Automation 737
34.3 Computer Numerical Control 741
34.4 Industrial Robotics 752

35 INTEGRATED MANUFACTURING SYSTEMS 759
35.1 Material Handling 759
35.2 Fundamentals of Production Lines 760
35.3 Manual Assembly Lines 762
35.4 Automated Production Lines 766
35.5 Cellular Manufacturing 770
35.6 Flexible Manufacturing Systems 774
35.7 Computer-Integrated Manufacturing 778

Part X Manufacturing Support Systems 782

36 PROCESS PLANNING AND PRODUCTION CONTROL 782
36.1 Process Planning 783
36.2 Other Manufacturing Engineering Functions 790
36.3 Production Planning and Control 793
36.4 Just-In-Time Delivery Systems 800
36.5 Lean Production 802

37 QUALITY CONTROL AND INSPECTION 807
37.1 Product Quality 807
37.2 Process Capability and Tolerances 808
37.3 Statistical Process Control 810
37.4 Quality Programs in Manufacturing 814
37.5 Inspection Principles 818
37.6 Modern Inspection Technologies 820

Appendix: Answers to Selected Problems 829

INDEX 833