15% delta rule 68, 69
30% delta rule 67–8

American options 6
annualised volatility see historical volatility
at the money
 definition 6
 butterfly, estimation 163
delta 50–3, 64–5
delta distribution 65–8
delta valuation 80–2
theta 117–18
vega and 96–101
at the money spread, approximation 148–9
at the money straddle 55
calculation using Black and Scholes formula 57–9
delta distribution in relation to 65–8
theta 126–7

Bell curve see normal standard distribution
Black and Scholes model
 gamma values 78
 logarithmic scale in 38
 at the money straddle calculation 57–9
 shortcomings of 1
 variation in trading days 20
 volatility in 19, 38, 51, 53
Boxes (sum of call spread and put spread of strikes) 138–9
application in real market 139–40
bull/bear spread 135
butterfly 155–72
 at the money values, estimation 163
 boundaries 161–2
call 158
costs 157
definition 155
distribution 159–61

Greeks for 167–71
out of the money value 164–5
put 158
put call parity 158–9
set up with puts and calls 156
short 155
straddle-strangle (‘iron fly’) 171–2
as strategic play 166–7
theta for 170–1
time to maturity and 166
valuation 159
vega for 169–70
volatility and 165
call 173–4
 butterfly 158–31
 horizontal spread 135–7
 in the money 34
 synthetic 31
 vega for 93
call spread 135–7, 175
delta of 68–9
call/put spread, horizontal 135
Cauchy distribution 191
Charm 2, 53–4
collar (risk reversal; fence) 178–9
colour 2, 91
conversion 30–4
convexity 41
costs
 butterfly 157
covered call writing 34–5, 130
covered writing 34
delta 2, 5, 37–54, 61–9
15% rule 68, 69
20–80 region 46
30% rule 67–8
at the money 50–3, 64–5
delta (Continued)
 boundaries of 61–4, 79–80
 for butterflies 167–8
 of call spread 68–9
 change of an option, gamma and 75–6
 change of option value through 38–40
 changes in time 53–4
 definition 37
 at different maturities 41–4
 at different volatilities 44–5
 distribution, at the money straddle and 65–8
 dynamic 40
 formula for 37
 for horizontal spreads 140–2
 per strike 46–7
 velocity of change 48, 49
 delta hedging 47–50, 112
 delta neutrality 38–9
 delta option 0% 61
 diagonal spreads 135
 dynamic delta 40

 excess kurtosis 191–2

 fat tails 191
 fence 178–9
 forward skew 130

 gamma 2, 5, 25, 49, 71–91
 aggregate for portfolio of options 73–4
 at the money straddle, value of 80–2
 boundaries, determination of 79–80
 for butterflies 168–9
 changing 76–7
 definition 71–2
 delta change of an option 75–6
 derivatives of 91
 formula 71, 85
 for horizontal spreads 142–4
 kurtosis and 190
 long 76
 long term example 77
 out of the money options, determination 89–91
 positive and negative 72, 76
 practical example 85–6
 put call parity and 34, 72
 in relation to time to maturity, volatility and
 underlying level 82–5
 short 76
 short term example 77–8
 stretch 84, 85, 91, 98, 190
 very short term example 78

 gamma hedging/trading 49, 71, 87–9
 based on Monte Carlo (simulation method) 180–90
 tight 189, 190
 gamma long book 189
 gamma portfolio 179
 gamma trading see gamma hedging
 gamma/theta ratio (alpha) 113, 120–4
 Garma-Klass volatility measure 22
 Gaussian distribution see normal standard
distribution
 Greeks 2–3
 for butterflies 167–71
 first-order 2
 for horizontal spreads 140–6
 interchangeable calls and puts and 25, 30, 34
 misinterpretation of 3–5
 put call parity and 34, 72
 second-order 2, 91
 third-order 2, 91

 horizontal spreads
 call/put 135
 delta for 140–2
 gamma for 142–4
 Greeks for 140–6
 theta for 145–6
 vega for 144–5
 historical (realised) volatility
 calculation applying the 16% rule 19–20
 calculation without µ 17–19
 intraday volatility 20–3
 Parkinson calculation 22
 traditional calculation 15–16
 variation in trading days 20
 vs implied volatility 23–4

 implied volatility
 vs historical volatility 23–4
 in the money
 definition 6
 in the money call 34
 interchangeability of puts and calls 25
 interest rates 35
 intrinsic value 26
 ‘iron fly’ 171–2

 killergamma 195–6
 kurtosis
 definition 190
 excess 191–2
 formula 190
 setting up gamma position and 190
Index

207

Laplace distribution 191
leptokurtic distributions 191
leptokurtic environment,
 transition from platykurtic environment towards 194–5
leptokurtic market 193–4
log-normal distribution 11–15
long 50 call 26
long 50 put 27

mesokurtic distributions 191
mesokurtic market 193
‘missing the trade’ 190
moneyness 133
Monte Carlo (simulation method) scenarios 179
gamma hedging strategies based on 180–90

normal standard distribution (Bell curve; Gaussian distribution) 7–8
vs log-normal distribution 11–15

out of the money
 butterfly, valuation 164–5
definition 6
 Greeks and put call parity 34
 theta and 127–8

Parkinson volatility 22, 190
platykurtic distributions 191, 192
 benefits of market 192–3
platykurtic environment,
 transition towards leptokurtic environment 194–5
pricing 55–60
probability distribution of value of future after 1yr trading 11
put 174
 butterfly 156, 158
 synthetic 32
 vega for 93
put call parity 25–35
 butterfly 158–9
 conversion 30
 future position reversal, synthetically creating 29
put spread (horizontal) 135, 137–8
ratio spread 135, 149–53, 176–7
reversals 29, 30–4
reverse skew 130
rho 2
risk reversal 178–9
Rogers-Satchel volatility measure 22
scalping 39
scenario analysis 79
short 50 call 26
short 50 put 27
skew 129–34
 forward 130
 horizontal 131
 moneyness and 133
 positive 130, 132
 reverse 130
 sticky at the money volatility 133–4
 trading 176
 vertical skew (volatility surface) 129, 130
 volatility smiles with different times to maturity 131–3
smile, volatility 130, 131–3
speed 2, 91
spreads 135–53
 at the money, approximation 148–9
 Boxes (sum of call spread and put spread of strikes) 138–40
 call (horizontal) 135–7
 Greeks for horizontal 140–6
 put (horizontal) 135, 137–8
 ratio 149–53
 time 146–7
 trading 175–6
square root of time to maturity 8
 impact on standard deviation 8–10
standard deviation 8
 definition 16
 formula 15
 impact of volatility and time on 8–10
 sticky at the money volatility, skew and 133–4
straddle 177–8
straddle-strangle (‘iron fly’) 171–2
strangle 178
stretch, gamma 84, 85, 91, 98, 190
subgaussian distributions 191
supergaussian distributions 191
synthetic call 31
synthetic options 31–4
synthetic put 32
synthetics 25
term structure of volatility 129
theta 2, 5, 25, 50, 87, 111–28
 on 3D scale, vs maturity and vs volatility 125
 at the money options in relation to underlying level 117–18
 at the money straddle, determination 126–7
 boundaries of 118–19
 for butterflies 170–1
theta 2, 5, 25, 50, 87, 111–28 (Continued)
definition 111, 112
distribution 111
formula 111
gamma long position and cost of 112
for horizontal spreads 145–6
maturity and 115–17
negative 112
out of the money options, determination 127–8
practical example 112–14
scalping cost 112
volatility and 114–15
see also gamma/theta ratio
tight hedger 89, 181
time, impact on standard deviation 8–10
time call/put spread 135
time decay see theta
time spread 146–7
time to maturity, butterfly and 166

ultima 2
Uniform distribution 191

vanna 2, 108
variance, formula 15
vega 2, 5, 25, 93–110
on 3D scale, vs maturity and vs volatility 101–2
at the money options vs time to maturity 99
at the money options vs underlying level \(F \) 99–101
at the money options, determination 96–7
at the money options, vs volatility 97–8
boundaries of 102–4
boundaries of, vs boundaries of gamma 104–5
for butterflies 169–70
for calls and puts 93
definition 93
derivatives of 108–10
for horizontal spreads 144–5
formula 93
long 93
negative and positive 93
out of the money options, determination 105–8
short 93
volatility regime changes and 95–6
vega bucketing 129
vega convexity (Vomma strategy) 2, 108–10, 196–202
in relation to time 202–4
vertical skew (volatility surface) 129, 130
vertical spread 135
veta 108
volatility 8, 11–24
delta and 44–5
butterfly and 165
changes in (vol of vol) 130
definition 11
impact on standard deviation 8–10
implied 20
regime changes, vega and 95–6
theta and 114–15
vega of at the money options vs 97–9
see also historical (realised) volatility
volatility smile 176
with different times to maturity, skew and 131–3
vomma (vega convexity) 2, 108–10
wide hedger 181
Yang-Zhang volatility measure 22
zero cost collars 178
zomma 2, 91