Index

References to figures are given in italic type. References to tables are given in bold type.

Acinetobacter spp., 17, 224
acoustic streaming, 159
actinometry, 188, 195
Aeromonas hydrophila, 212
age thickening, 164
Alicyclobacillus acidoterrestris, 199, 212, 222
alkaline phosphatase, 42, 57, 59
Allura Red AC, 140
ALTA, 2431, 274
angiotensin-converting enzyme (ACE), 311
animal feeds, 308
antioxidants, 130, 136–138, 229, 316
aroma, 127–8, 137–8, 230, 235
Aspergillus spp., 225
Aspergillus niger, 196, 212
Australia, 194
Bacillus spp., 15, 16, 20, 120, 189, 267
thermal inactivation, 57
Bacillus anthracis, 20
Bacillus cereus, 222, 231, 282, 284
Bacillus licheniformis, 231, 285
Bacillus subtilis, 157, 212, 289, 183
Bacillus subtilis protease, 126
back-pulsing, 6
bacteria see microbial inactivation
bactericides, 124
bacteriocins, 268–73
applications, 273–4
food safety, 274–5
sensory effects, 275–6
class I, 269–70
class II, 271, 272–3
class IIb, 271–2
to emerging technologies and, 280
expression, 272
hurdle technology and, 277–80
natural preservatives and, 285–7
resistance to, 276–7
structure and production, 268–71
thermal processing and, 279–80
bacteriofugation, 15
Bactocatch process, 5
Beta-serum, 235
beverages, 192–4
carbon dioxide treatment, 233–4
flavoured milk, 133
fruit juice-milk, 130–7, 131–2
fruit juice-soya milk, 132
yoghurt-based, 138
Bifidobacterium bifidum, 234, 234
bile salt stimulated lipase (BSSL), 192
bioactive compounds, 311–13, 22–3
biodosimetry, 188

Edited by Nivedita Datta and Peggy M. Tomasula.© 2015 John Wiley & Sons, Ltd. Published 2015 by John Wiley & Sons, Ltd.
breweries, 192
Brochothrix thermosphacta, 212, 217
butter, 234
buttermilk, 21–2
Caciotta cheese, 106
calcium, 310
Campylobacter spp., 268
cancer, 310, 316
Candida lambica, 212
capacitance coupling, 252–3
carbon dioxide, 206
cheese manufacture, 236–7
cottage cheese, 232–3
fermented and flavoured dairy beverages, 233–4
fractionation
lipids, 234–5
proteins, 237–9
freezing an, 208–9
high-pressure, 226–7
low-pressure injection see carbonation
mechanism of action, 209–10
microbial inactivation, 209–11, 211–22, 223–5
food composition and, 225–6
inactivation kinetics, 223
processing parameters, 211
physicochemical properties, 206–7
regulatory status, 239
solubility in aqueous solutions, 207–8
solubility in milk, 208–9
yoghurt, 233
carbonation, 207–8
advantages, 228
fermented and flavoured dairy beverages, 233–4
pasteurized milk, 231–2
product quality and, 229–30
raw milk, 230–1
β-carotene, 320
carotenoids, 136
casein, 19, 21
carbon dioxide and, 208, 237
dehydrated powders, 162
denaturation, 238
fouling, 12
high-pressure homogenization, 101–2
high-pressure treatment and, 76–7
yoghurt, 83
microwave heating, 52–3
sonication, 163–4
cavitation, 96
ultrasound, 150, 152
cheese 80, 81, 235, 236
high-pressure homogenization, 105–6
high-pressure processing, 79–83, 81
lactic acid bacteria (LAB), 270
CHIEF see concentrated high intensity electric field
carbonation
children, 322
CiderSure 3500, 185, 185, 189–90
Claranor, 199
clean-in-place (CIP) processes, 1
Clostridium spp., 280
Clostridium botulinum, 16, 228, 230
Clostridium perfringens, 282, 289
Clostridium tyrobutyricum, 122
Colostrum, 84
competition sensing, 273–4
concentrated high intensity electric field (CHIEF), 251
equipment, 253, 255–8, 256
development, 262
future development, 261
as hurdle technology, 262–3
microbial inactivation, 258–9
other applications, 261
physical principles, 253–5
quality effects, 259–61
conjugated linoleic acid (CLA), 314, 320, 321
Consumer Health Information for Better Nutrition Initiative, 310
cottage cheese, 50, 232–3, 49
cream liquers, 107–8
creaming, 155
critical transmembrane potential, 119
Cronobacter sakazakii, 139, 157
crossflow microfiltration
cleaning, 4, 6, 157–9
fluid models, 8–10
gel polarization, 10–11
resistance-in-series, 12–13
membrane types, 1–3, 4
microfiltration (MF), 2, 3–6, 3
INDEX 335

fluid models, 8–10
pilot plants, 6–8
models, osmotic pressure, 11–12
nanofiltration (NF), 2
operating pressure, 3
pilot plants, 6–8
reverse osmosis (RO), 2
ultrafiltration (UF), 157–9
crossflow velocity (CFV), 1
cryo-concentration, 50
Cryptosporidium parvum, 189
dairies, 307–8
Darcy’s law, 8, 12
Dean effect, 187
degassing, 155
diabetes, 315
dielectric heating, 43, 45
dielectric properties, 46, 47
diglycerides, 235
dipolar rotation, 41
Dittus–Boelter equation, 11
Diversified Technologies Inc., 117
DNA mutation, 188
eggs, 280
electrical conductivity, 37–8
electrical resistance heating see ohmic heating
Electropure Process, 40
electrostatic interactions, 172
emulsifiers, 225
emulsions, 93
breakdown process, 95
mechanical emulsification process, 95
stability, 94–8
Enteriobacter sakazakii, 198
Enterococcus spp., 224
enterocin A, 279, 282
Enterococcus spp., 267
Enterococcus durans, 270, 272
Enterococcus faecalis, 212, 217, 222, 224, 231, 270
enzymes, 102–3
high-pressure processing, 77–8
pulsed electric field (PEF), 125, 135
ultrasound, 157
Escherichia spp., 189, 190
Escherichia coli, 57, 58, 60, 119, 120, 122, 157, 198, 231, 258, 259, 283
bacteriocin treatment, 288
carbon dioxide treatment, 212–13, 217
CHIEF, 258
high-pressure treatment, 79
essential oils, 285
ethanol, 279
Ewe’s milk cheese, 80
extended shelf life (ESL) milk, 15–20, 197
carbon footprint, 17–19
quality and safety, 19–20
fats, 225
fatty acids, 138, 235, 313–14, 321–2, 52
organic milk, 319
FDA Modernization Act (FDA, 1997), 310
feed, 320–1
fish oil, 321
Flavobacterium spp., 224
flavoured milk, 133, 140
fluence, 195
fluorescence of advanced Maillard products and soluble tryptophane (FAST), 42
foam reduction, 155–6
Food and Drug Administration (FDA), 239, 268, 309–10
fouling
microfiltration, 8, 9
ohmic heating, 36, 41–2
fractionation, 76, 206
lipids, 234–5
proteins, 237–9
frankfurters, 280
free fatty acids (FFA), 235
freeze-drying, 49, 51, 170
fruit juice-milk beverages, 130–7, 131–2
fruit juice-soya milk beverages, 132
fruit smoothies, 133
fruits, 73
functional dairy products, 83–4
furosine, 19
β-galactosidase, 57
Gassericin A, 282
gel polarization models, 10–11
gelation, whey proteins, 167, 168
Geotrichum spp., 225
glycerol, 226
glycomacropeptide, 236
goat milk, 41, 189
Gouda cheese, 81, 80
growth factors, 22

graded permeability (GP) membranes, 5, 13
growth spore elimination, 20

headsphere packaging, 239

health claims, 309–10

heat treatment see thermal processing

high-pressure carbon dioxide (HPCD), 206

high-pressure homogenization, 94
applications
cheese, 105–6
ice cream, 106–7
milk, 103–4
microbial inactivation, 103
microfluidization, 98–9
milk fat globules, 99–101
nozzles and valves, 96–8, 97
flow geometries, 98
principles, 96–8

high-pressure processing, 71–3
bacteriocins and, 288–9
cheese, 79–83, 81, 79–83
effects on physical and chemical equilibria, 74
functional dairy products, 83–4
homogenization see high-pressure homogenization

ice cream, 84–5

milk
enzymes, 77–8
fat and fat globules, 75
rheological properties, 78
salt solubility, 74–5
whey proteins, 75–6
pressure levels, 72
products treated, 73

system components, 72
yoghurt, 83

high-temperature short-time (HTST)
pasteurization, 19, 104, 205, 260

pulsed electric field and, 128–9

homeostasis, 277–8
homogenization, 19, 93–4
applications, yoghurt, 104–5
cream liquers, 107–8
droplet breakup, 94–5
emulsion stability, 94–6
pressures, 101
principles, 96–8
ultrasound, 152–5

human milk, 192

hurdle technology, 205–6
hurdles, 205, 262–3

bacteriocins, 277–80, 282–4

hydrophobicity, 172
hypertension, 311–12

hypothiocyanite ions, 285

ice cream, 234, 41
high-pressure processing, 84–5

microbial inactivation, 103
microwave heating, 50

ice cream mixes, 40, 103

illness, 267–8

immunoglobulins, 84

infant formula milk, 133, 138–9, 21, 50, 53, 139, 151, 157, 170, 197

iodine, 318
ionization reactions, 74
isoflavones, 138, 138
Isoflux membranes, 5, 13, 14, 17
bacterial spore elimination, 20
isostatic principle, 71

joule heating see ohmic heating

juices and beverages, 73, 117–18
carbonation, 229–30
pulsed electric field treatment, 130–7, 131–3
ultraviolet absorption, 184

kefir, 41

La Serena, 81

lactic acid bacteria (LAB), 268–9, 224
lacticin 3147, 275
INDEX 337

Lactobacillus spp., 228, 270
Lactobacillus acidophilus, 234, 234
Lactobacillus brevis, 137, 213, 270
Lactobacillus plantarum, 134, 213
Lactobacillus sakei subsp. carnosum, 213
Lactococcus lactis, 270, 271, 275, 282
lactoferrin, 312, 318
β-lactoglobulin, 52, 75–6, 198–9
lactoperidose, 19
lactoperoxidase–thiocyanate–hydrogen peroxide system (LPS), 285
lactose, sonocrystallization, 159–61
lactulose, 19
lantibiotics, 269–71, 276–7
Laplace pressure, 94
lassi, 234
Le Chatelier’s principle, 71
Legionella dumoffii, 213
Leveque equation, 11
lipoprotein lipase, 77–8, 102, 104
lipoxygenase (LOX), 137
lipozyme, 235
Listeria innocua, 58, 60, 79, 119, 137, 157, 198, 213, 259, 286, 287, 120
Listeria monocytogenes
bacteriocins, 268, 271–87, 281–4
carbon dioxide treatment, 226, 228, 231
concentrated high-intensity electric field (CHIEF), 251, 259, 260
filtration, 20
microwave heating, 59
pulsed electric field treatment, 119, 121, 123
pulsed light treatment, 191, 193, 197
sonication, 156
ultraviolet treatment, 189
lysozyme, 124–5, 286, 289
magnesium, 318
magnetron, 43
Maillard reaction, 19, 42, 49, 52, 57, 71, 268
malondialdehyde and other reactive substances (MORS), 191
Marguerite milk, 19
meat products, 73
micellar calcium phosphate (MCP), 74–5
microbial inactivation, 55–60
bacteriocins see bacteriocins
carbon dioxide, 209–11, 211–22, 223–5
broths and growth media, 212–16
carbonation, 230
food composition and, 225–6
inactivation kinetics, 223
milk and food ingredients, 217–22
processing parameters, 211
concentrated high intensity electric field (CHIEF), 251–2, 258–9
high-pressure homogenization, 103
high-pressure treatment, 78–9
pulsed electric field (PEF), 119–25, 120, 130–4
pulsed light (PL), mechanism of action, 196
reaction kinetics, 55
thermosonication, 156–7
ultraviolet, 182, 189–92
mechanism of action, 188–9
see also pasteurization
Micrococcus spp., 267
microfiltration (MF), 2, 3–6, 3
applications, 3, 13–15
cheese brine spore reduction, 23
cold milk processing, 20–1
extended milk shelf life, 15–20
milk bioactive compound separation, 22–3
milk fat fractionation, 21–2
production of concentrated micellar casein and whey
Proteins, 13–15
carbon footprint, 17–19
ceramic membranes, 4
concentration polarization, 8, 9
fluid models, 8–10
gel polarization, 10–11
osmotic pressure, 11–12
resistance-in-series, 12–13
fouling, 8, 9, 12
hydrophilic membranes, 4–5
membrane cleaning, 4, 6, 157–9
membrane modifications, 23
membrane selectivity, 5
membrane types, 4
microfiltration (MF) (continued)
 microsieves, 23–4
 pilot testing, 5–6
 plant configuration, 16, 18
 process schematic, 7
 pulsed electric field and, 129–30
 temperature effects, 8
microfluidization, 98–9, 100–1
 cheese, 106
 cream liquers, 107–8
 ice cream, 106–7
 microbial inactivation, 103
Microgard®, 286
 microsieves, 23–4
microwave heating, 41–2, 49
 applications, 48–54, 49
 bacterial inactivation, 51
 composition, 45
 continuous flow vs batch systems, 59
 dielectric properties of dairy products, 46
 flow conditions, 48
 frequency, 44–5
 microbial inactivation, 58
 physical properties of sample, 47–8
 principles, 43–4
 vitamin content and, 53–4
milk concentrates, 164–7
milk enzymes see enzymes
milk fat globule membrane (MFGM), 22, 75–6, 93–4, 152
 organic milk, 320
milk fat globules, size distribution, 99–101
minerals, macro, 317–18
modified atmosphere packaging (MAP), 209
molecular weight cut-off size (MWCO), 2
monolaurin, 285
monoglycerides, 235
monounsaturated fatty acids (MFA), 314
mozzarella, 81, 106
Mycobacterium avium subsp paratuberculosis (MAP), 190
Mycobacterium paratuberculosis, 122
nanofiltration (NF), 3
 applications, 2
 resistance, 276
 NIZO, 151
 nonstarter lactic acid bacteria (NSLAB), 275–6, 275–6
Nutrition Labeling and Education Act (FDA, 1990), 309
 nutritional claims, 308–11
ohmic heating, 36–40
 applications, 40–2
 electrical conductivity, 37–8
 fouling, 36, 41–2
 heater configuration, 39
 microbial inactivation, 57
 particle orientation characteristics, 38–9
 product characteristics, 40
Ohm’s law, 37
orange juice, 259–61
organic acids, 285–6
Organic Foods Production Act (1990), 308
 organic milk, 307
 dairies, 307–8
 feed changes, 320–1
 future trends, 321–2
 nutritional claims, 308–11
 osmotic pressure model, 11–12
 outbreaks of illness, 267–8
 ovine milk, 23, 106
 packaging, 192, 199, 232–3
Paenibacillus spp., 225
paneer, 50, 49
Parmesan cheese, 235
pasta filata curd, 49, 50
pasteurization
 in bottle sterilization, 34
 by pulsed electric field, 139–40
 cold, 20–1
 electrical, 40
 high temperature, 34
 high temperature short time (HTST), 19
 low-temperature, 34
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>microwave</td>
<td>48–50, 51–2</td>
</tr>
<tr>
<td>organic milk</td>
<td>318–19</td>
</tr>
<tr>
<td>pulsed light</td>
<td>198–9</td>
</tr>
<tr>
<td>ultra</td>
<td>34</td>
</tr>
<tr>
<td>ultraviolet</td>
<td>185–6</td>
</tr>
<tr>
<td>Pasteurized Milk Ordinance (PMO)</td>
<td>194</td>
</tr>
<tr>
<td>Pecorino cheese</td>
<td>106</td>
</tr>
<tr>
<td>pectinmethylesterase (PME)</td>
<td>135</td>
</tr>
<tr>
<td>pediocin</td>
<td>272, 273, 274, 279</td>
</tr>
<tr>
<td>Penicillium spp.,</td>
<td>225</td>
</tr>
<tr>
<td>peptides</td>
<td></td>
</tr>
<tr>
<td>antimicrobial</td>
<td>312</td>
</tr>
<tr>
<td>opiate</td>
<td>312–13</td>
</tr>
<tr>
<td>permeate flux</td>
<td>1</td>
</tr>
<tr>
<td>peroxidase</td>
<td>137</td>
</tr>
<tr>
<td>phytosterol enrichment</td>
<td>52</td>
</tr>
<tr>
<td>pilot plants, microfiltration</td>
<td>6–8</td>
</tr>
<tr>
<td>plasmin</td>
<td>19, 77–8, 102, 231</td>
</tr>
<tr>
<td>polyethersulphone (PES)</td>
<td>24</td>
</tr>
<tr>
<td>polygalacturonase (PG)</td>
<td>135</td>
</tr>
<tr>
<td>polymeric membranes</td>
<td>4</td>
</tr>
<tr>
<td>polyunsaturated fatty acids (PUFA)</td>
<td>314</td>
</tr>
<tr>
<td>poly(vinylidene fluoride) (PVDF)</td>
<td>4</td>
</tr>
<tr>
<td>potassium</td>
<td>318</td>
</tr>
<tr>
<td>powdered milk</td>
<td>162, 49, 51</td>
</tr>
<tr>
<td>power ultrasound</td>
<td>150</td>
</tr>
<tr>
<td>Propionibacteria spp.,</td>
<td>224, 286</td>
</tr>
<tr>
<td>proteinase plasmin</td>
<td>102</td>
</tr>
<tr>
<td>Pseudomonas aeruginosa</td>
<td>214</td>
</tr>
<tr>
<td>Pseudomonas fluorescens</td>
<td>119, 120, 156, 214, 218, 226, 230–1, 288</td>
</tr>
<tr>
<td>Pseudomonas spp.,</td>
<td>189, 197, 224</td>
</tr>
<tr>
<td>Psychrobacter spp.,</td>
<td>17</td>
</tr>
<tr>
<td>pulsed electric field (PEF) treatment</td>
<td>115–16</td>
</tr>
<tr>
<td>bacteriocins and</td>
<td>280, 287–8</td>
</tr>
<tr>
<td>bioactive compounds</td>
<td>128</td>
</tr>
<tr>
<td>chamber design</td>
<td>115–16</td>
</tr>
<tr>
<td>cofield designs</td>
<td>115–16</td>
</tr>
<tr>
<td>combined with pasteurization</td>
<td>128–9</td>
</tr>
<tr>
<td>commercial applications</td>
<td>140–1</td>
</tr>
<tr>
<td>enzyme inactivation</td>
<td>125–6, 135</td>
</tr>
<tr>
<td>equipment</td>
<td>117–18</td>
</tr>
<tr>
<td>field strength</td>
<td>116</td>
</tr>
<tr>
<td>fruit juice-milk beverages</td>
<td>130–7</td>
</tr>
<tr>
<td>microbial inactivation</td>
<td>119–25, 120, 130–4</td>
</tr>
<tr>
<td>combined with antimicrobial compounds</td>
<td>124</td>
</tr>
<tr>
<td>microorganism characteristics</td>
<td>122</td>
</tr>
<tr>
<td>microfiltration and</td>
<td>21</td>
</tr>
<tr>
<td>nutrient degradation</td>
<td>136</td>
</tr>
<tr>
<td>other beverages</td>
<td>139–40</td>
</tr>
<tr>
<td>physicochemical and sensory properties</td>
<td></td>
</tr>
<tr>
<td>fruit juice-milk beverages</td>
<td>136–7</td>
</tr>
<tr>
<td>milk</td>
<td>126–8</td>
</tr>
<tr>
<td>pulse shape</td>
<td>116</td>
</tr>
<tr>
<td>quality-related enzymes</td>
<td>125–6</td>
</tr>
<tr>
<td>shelf life extension</td>
<td>128–30</td>
</tr>
<tr>
<td>soya milk-based beverages</td>
<td>132, 137–8</td>
</tr>
<tr>
<td>yoghurt-based beverages</td>
<td>138</td>
</tr>
<tr>
<td>pulsed light technology</td>
<td>194–5</td>
</tr>
<tr>
<td>commercial developments</td>
<td>199</td>
</tr>
<tr>
<td>microbial inactivation, mechanism of action</td>
<td>196</td>
</tr>
<tr>
<td>PurePulse Technologies Inc.</td>
<td>117, 194</td>
</tr>
<tr>
<td>Quark</td>
<td>14</td>
</tr>
<tr>
<td>Queso Blanco</td>
<td>274</td>
</tr>
<tr>
<td>Queso Fresco</td>
<td>81, 106</td>
</tr>
<tr>
<td>radiofrequency (RF) heating applications</td>
<td>49</td>
</tr>
<tr>
<td>microbial inactivation</td>
<td>51, 54, 58</td>
</tr>
<tr>
<td>composition</td>
<td>45</td>
</tr>
<tr>
<td>flow conditions</td>
<td>48</td>
</tr>
<tr>
<td>frequency</td>
<td>44–5</td>
</tr>
<tr>
<td>physical properties of sample</td>
<td>47–8</td>
</tr>
<tr>
<td>principles</td>
<td>43–4</td>
</tr>
<tr>
<td>temperature</td>
<td>45–6</td>
</tr>
<tr>
<td>radiometry</td>
<td>188</td>
</tr>
<tr>
<td>raw milk</td>
<td>19–20, 93, 285</td>
</tr>
<tr>
<td>carbon dioxide content</td>
<td>208</td>
</tr>
<tr>
<td>carbonation</td>
<td>230–1</td>
</tr>
<tr>
<td>cheeses</td>
<td>79, 288</td>
</tr>
<tr>
<td>lactoperoxidase–thiocyanate–hydrogen peroxide system (LPS)</td>
<td>285</td>
</tr>
<tr>
<td>retenate</td>
<td>2</td>
</tr>
<tr>
<td>reuterin</td>
<td>285</td>
</tr>
<tr>
<td>reverse osmosis (RO)</td>
<td>2, 3</td>
</tr>
<tr>
<td>applications</td>
<td>2</td>
</tr>
<tr>
<td>rheumatoid arthritis</td>
<td>315</td>
</tr>
<tr>
<td>riboflavin</td>
<td>315, 316</td>
</tr>
</tbody>
</table>
Saccharomyces cervisiae, 196–7
Saccharomyces cerevisiae, 214–15
salami, 278
Salmonella spp., 20, 54, 121, 123, 134, 157, 215, 259
salt, 225
salts, 74–5
saturated fatty acids (SFA), 314
seafood products, 73
serum protein (SP), removal, 13–14
shelf life, 205
shelf life extension, 128–30
Sherwood number, 11
Sievecorp, Inc., 23
sodium, 318
solid phase microextraction (SPME), 136
somatic cells, 225
sonication see ultrasound
sonotrodes, 151
sonocrystallization, 159–61
sour cream, 234
soya milk, 132, 137–8
Sphingomonas spp., 17
square-wave pulses, 116–17, 118
Staphylococcus spp., 189, 224
Staphylococcus aureus, 119, 121, 122, 124, 157, 197, 215, 219–20, 222, 283, 312
Staphylococcus saprophyticus, 216
starch, 225
Streptococcus lactis, 121
Streptococcus pyogenes, 312
Streptococcus spp., 224
Streptococcus thermophilus, 57, 234, 269, 275, 312
structure/function claims, 310–11
sugar, 226
sugar syrup, 199
supercritical carbon dioxide, 206–7, 211, 235
SurePure tubular UV module, 186–7, 186, 191
surface disinfection, 192
Taylor–Couette reactor, 186, 186
Tetra Pak Ultima process, 16
thermal processing, 33–4, 34
bacteriocins and, 279–80, 281–5
canned milk sterilization, 34
evaporation and concentration, 34
heat treatment for yoghurt, 35
heating before powder production, 35
microwave heating see microwave heating
cold spot identification, 56–7
microwave heating, 42–54
ohmic heating see ohmic heating
preheating, 34
radiofrequency heating see radiofrequency heating
spray dryer heating, 35
ultra high temperature, 34
thermosonication, 125
microlasinactivation, 156–7
thiamin, 316
thiols, 54
trans fatty acids, 52
transglutaminase, 83
transmembrane permeation (TMP), 2
triglycerides, 235
Trojan UV Technologies Inc, 186
turbidity, 182
turbulent flow, 96, 185
ultra high temperature (UHT) milk, 15, 129
ultrafiltration (UF), 1, 3
film theory model, 10
ultrasound-assisted, 157–9
ultrapasteurized milk, 15
ultrasound, 149–50
airborne sonication, 151
applications, 150
casein micelle, 163–4
creaming, 155
degassing and foam reduction, 155–6
direct contact sonication, 151
effect on sensory characteristics, 172–3
enzymes, 157
equipment, 151
filtration, 157–9
homogenization, 152–5
lactose sonocrystallization, 159–61
microlasinactivation, 156–7
INDEX

milk concentrate viscosity, 164–7
powder rehydration, 161–2
whey proteins
 chemical effects, 169
 heat stability, 169–72
 rheological properties, 168–9
ultraviolet (UV) treatment, 181–2
 absorption coefficient, 184
 advantages, 182
 applications, 183
 commercial developments, 192–4
 dose determination, 187
 issues, 183
 microbial inactivation, 182, 193
 mechanisms of action, 188–9
 packaging and surface disinfection, 192
 process overview, 183–5
 pulsed light see pulsed light technology
pulsed light, 194, 196–9
 advantages, 194
 commercial developments, 199
 principles of operation, 195
 treatment systems, 184–5
 coiled tube reactors, 185, 190
water, 194
uniform transmembrane pressure (UTP), 5, 13
US Department of Agriculture (USDA), 308

vaccenic acid, 319
vegetables, 73
viscosity control, 164–6
viscosity, 226, 8
vitamins, 128, 136, 229–30, 261, 315, 231
 fat-soluble, 314–16
 K, 316
water-soluble, 316–17
volume concentration reduction (VCR), 7

water, 41
 dipole rotation, 43
Wek-Tek, 194
Westfalia Separator Group, 15–16
whey proteins
 carbon dioxide treatment and, 225
 fractionation, 237–9
 concentrate (WPC), 162
 high-pressure homogenization, 100–1, 102
 high-pressure treatment, 75–6
 isolate (WPI), 235
 microwave heating, 52–3
 pulsed light treatment, 198–9
 sonication
 chemical effects, 169
 gelation and viscosity, 167–8
 heat stability, 169–72
whey solutions
 concentration, 2, 13–14
 gel formation ability, 51
 heating, 41

Yersinia enterocolitica, 216, 228
yoghurt
 beverages, 138
 carbon dioxide, 233
 high-pressure homogenization, 104–5
 high-pressure processing, 83
 pulsed electric field, 138
 thermal processing, 35

zinc, 318
Zygosaccharomyces bailii, 216