Contents

List of Contributors
ix

Preface
xi

1 Introduction

Arvind Dasari and James Njuguna

References
5

2 Three-dimensional Microstructural Characterization of Polymer Nanocomposites by Electron Tomography

Florent Dalmas and Lucian Roiban

2.1 Introduction
7
2.2 3D Observation at the Nanoscale
8
2.2.1 Imaging with Electrons
8
2.2.2 Principles of Transmission ET
10
2.3 Application to Polymer Matrix Nanocomposites
13
2.4 3D Image Analysis and Quantification
19
2.5 Conclusion and Prospects
23
References
25

3 Polymer Nanocomposites for Food Packaging Applications

Shiv Shankar and Jong-Whan Rhim

3.1 Introduction
29
3.2 Polymer Nanocomposite
31
3.2.1 Types of Polymer
31
3.2.2 Types of Nanofillers
32
3.3 Preparation of Nanocomposites
34
3.4 Characterization Methods of Polymer Nanocomposite Films
36
3.5 Types of Polymer Nanocomposite Packaging
36
3.5.1 Rigid Packaging
37
3.5.2 Nylon-Based Packaging Materials
38
3.5.3 Biodegradable Packaging
39
3.5.4 Flexible Packaging
39
6 Magnetic Properties of Polymer Nanocomposites
Paolo Allia, Marco Sangermano and Alessandro Chiolerio

6.1 Introduction

6.2 Preparation of Magnetic NPs and Its Influence on the Properties of NCs
 6.2.1 Top-down versus Bottom-up Approach to Synthesis
 6.2.2 Considerations Regarding Homogeneity and Interactions

6.3 Anhysteretic Properties and Interparticle Interactions

6.4 Hysteretic Properties

6.5 Nanocomposites Exhibiting Magnetoelectric Properties

6.6 Applications

References

7 Optical Properties of Polymer Nanocomposites
Ignazio Roppolo, Marco Sangermano and Alessandro Chiolerio

7.1 Introduction

7.2 Photoluminescence and Related Applications
 7.2.1 Nanocomposite with Quantum Dots
 7.2.2 Transition Metal Nanocomposites
 7.2.3 Rare-Earth Polymer Nanocomposites

7.3 Light Emission in Polymer Nanocomposites: From Science to Applications

7.4 Transparency and Adsorbance in Polymer Nanocomposite

References

8 Bismuth-Based Nanomaterials and Platforms for Sensing and Biosensing Applications
Miquel Cadevall, Josep Ros, and Arben Merkoçi

8.1 General Properties and Applications of Bismuth

8.2 BiNPs Synthesis
 8.2.1 Chemical Methods
 8.2.2 Physical Methods

8.3 Bi-Based Modifications and Composites for (Bio)sensing Platforms
 8.3.1 Chemical Sensing
 8.3.2 Biosensing Applications
<table>
<thead>
<tr>
<th>Contents</th>
</tr>
</thead>
<tbody>
<tr>
<td>8.4 Conclusions</td>
</tr>
<tr>
<td>Acknowledgments</td>
</tr>
<tr>
<td>References</td>
</tr>
</tbody>
</table>

| 9 High-Temperature-Resistant Polymer Nanocomposites | 183 |
|---|
| Indraneel S. Zope and Aravind Dasari |
9.1 Background	183
9.2 Representative High-Performance Polymer Nanocomposites	187
9.2.1 Polyethersulfone Nanocomposites	187
9.2.2 Polyimide Nanocomposites	192
9.2.3 Polyetherimide Nanocomposites	196
9.3 Applications of High-Temperature Polymers and their Nanocomposites	198
Acknowledgments	200
References	200

Index 203