INDEX

Admittance surfaces, 268–278
All angle negative refraction, 8
Alternate right-handed/left-handed (ARLH) sections, 199–207
bandpass filters and, 203–207
complementary split ring resonators, 203–207
diplexers and, 203–207
S-band filter, 202
split ring resonators, 199–203
Amplification of evanescent modes, 20–21, 288–292
Antenna applications, 252–258
angle of main radiation lobe, 254
electronically scanned antennas, 254–258
leaky-wave antenna, 254–258
left-handed media, 254–258
media pairs, 253
radiation limit of Chu for Q, 254
radiated power, 254
Anti-symmetric resonances, 71
ARLH. See alternate right-handed/left-handed.
Babinet principle, 268–269, 272–273
complementary split ring resonator planar arrays, 272–273
Backward leaky modes, 19–20, 254–259
Backward media, 2, 3
Backward transmission line, 120–128
backward wave, 120–121
characteristic impedance, 120
constitutive parameters, 123–124
design and fabrication, 128
dispersion of, 123
forward wave, 121
implementation of, 124–125, 128–131
composite right-/left-handed (CRLH), 124–128
left-handed structure, 120–121
right-handed structure, 121
transverse electromagnetic (TEM) mode propagation, 123–124
Backward wave, 120–121
Backward wave coupler, 246–248
Backward-wave propagation, 2–4, 9–12
Cerenkov radiation, 10–11
inverse Doppler effect, 10
negative Goos–Hanchen shift, 12
Balanced composite right-/left-handed (CRLH) transmission lines, 127–128
Bandpass filters, 198–227
admittance inverters, 208
alternate right-handed/left-handed (ARLH) sections, 199–207
design methodology, 210
Bandpass filters (Continued)
hybrid approach, 210
hybrid model, 210
right-handed section implementation, 218–225
ultra-wide, 219–227
Bandwidth, enhancement of, 236–244
phase shifters, 244
rat race hybrid couplers, 239–243
BC-SRR. See broadside-coupled split-ring resonator design.
Bianisotropy, 65–69
Bloch impedance, 120, 152, 155
Bloch impedance. See Characteristic impedance
Broadband device components, 236–244
Broadside-coupled split-ring resonator design (BC-SRR), 60–62
Bulk metamaterials
alternative designs, 102–107
chiral, 97–102
ferrite, 92–97
infrared frequencies, at, 79–80
optical frequencies, at, 79–80, 106–107
split ring resonators (SRRs) based, 65–70, 80–88
Canalization devices, 302–303
Cerenkov radiation, 10–11
Characteristic (Bloch) impedance, 120
Chiral media, 97–102
backward-wave propagation, 98–99
chiral nihility, 102
racemic mixture, 97
Chiral metamaterials, 97–102
Chiral nihility, 102
Circuit analysis approach, 44
Circuit model comparisons, 175–180
dual left-handed lines vs. resonant types, 175–180
Coefficients, transmission and reflection, 13–15, 17
Compact broadband device components, 236–244
Complementary split ring resonators (CSRR), 119, 155–163
admittance surfaces, 268–278
alternate right-handed/left-handed (ARLH) sections, 203–207
electromagnetic properties of, 156–160
electro-inductive waves, 284–287
equivalent circuit models, 156–160, 166–170
filters, characteristics of, 207–224
frequency-selective surface, 278
left-handed transmission lines, 163–166
metamaterial transmission line synthesis and, 163–175
negative permittivity, 163–166
numerical calculation, 160–163
parameter extraction technique, 170–172
planar arrays, 272–273
Complex waves, 19–20
Composite right-/left-handed (CRLH) transmission lines, 124–128
balanced, 127–128
coplanar waveguide (CPW) configuration, 129
host propagating medium, 129
distributed components, 129
lumped elements, 129
leaky-wave antennas, 254–255
microstrip structure, 129
Constitutive parameters
backward transmission line and, 123–124
bulk split-ring metamaterials, 65–70
Coplanar waveguide (CPW), 129, 136
Couplers in planar technology, 246–252
backward wave, 246–248
forward wave, 248–249
improvements to, 249–252
CPW. See Coplanar waveguide
CRLH. See Composite right-/left-handed transmission lines
Cross-polarization effects, 54–59, 99–100, 276–278
CSRR. See Complementary split ring resonators
Diplexers, 188–189
alternate right-handed/left-handed (ARLH) sections, 206–207
Dispersion relations of bulk metamaterials, 69, 83–87, 90–92
INDEX 311

of transmission-line metamaterials, 120–128
of resonant type transmission-line metamaterials, 151, 167
Distributed components, 129
Double-negative media, 2
Double-split split-ring resonator (2-SRR), 62
Dual left-handed lines, resonant types vs., 175–180
Dual transmission line. See backward transmission line.
Dual transmission line. See purely left-handed transmission line.
Dual-band components, 244–246
Duality, 155, 272–273, 285
Dynamic resonances, 71

EBGs. See Electromagnetic band gaps
EC-SRR. See Edge-coupled split ring resonator
Edge-coupled split ring resonator (EC-SRR), 52–59
EIWs. See Electro-inductive waves
Electric resonances, 71
Electro-inductive waves
applications of, 287
complementary split ring resonators, 284–287
Electrodynamics of left-handed media, 1–35
Electromagnetic band gap (EBG), 194, 227
transmission line, 191–192
Energy density, 4–6
Equivalent circuit models
of composite right/left handed (CRLH) transmission lines, 124–125
of complementary split ring resonators (CSRRs), 156–160
of complementary split ring resonators (CSRRs) loaded transmission lines, 166
of purely right/left handed (PRH and PLH) transmission lines, 121
of split ring resonators (SRRs), 52–65
of split ring resonators (SRRs) loaded transmission lines, 146
Evanescent Fourier harmonics, 25–27, 289–290
Evanescent mode amplification. See Amplification of evanescent modes
Fermat principle, 9
Ferrite lens, 296
Ferrite metamaterials, 92–97
left-handed circularly polarized (LCP) wave, 93
magnetostatic surface waves (MSSWs), 95
right-handed circularly polarized (RCP) wave, 93
Ferrites, low-loss cubic, 92
Filters, 188–189
complementary split ring resonators (CSRR), 207–224
high-pass, 225–227
narrow bandpass, 198–207
planar, 193–198
S-band, 203
tunable, 227–233
ultra-wide bandpass, 225–227
Forward leaky modes, 254–259
Forward transmission line, phase velocity calculation, 122
Forward wave coupler, 248–249
Forward wave, 121
Fourier harmonics, 26–27
Frequency-selective surface, 278
Goos–Hanchen shift, negative, 12
Group velocity, 4–6
calculation of, 122
Guided waves, 17–19
Higher-order resonances, 70–73
High-pass filters (HPFs), 225–227
HPFs. See High-pass filters
In vacuo capacitance, 57, 100
Indefinite media, 34–35
Infrared frequencies, SRRs at, 75–80
Inverse Doppler effect, 10
Isotropic split-ring resonators, 73–75
LCP. See Left-handed circularly polarized wave
Leaky backward waves, 19–20
Left-handed circularly polarized (LCP) wave, 93
Left-handed media
antenna applications and, 252–258
energy density, 4–6
Fermat principle, 9
group velocity, 4–6
impedance, 9, 14, 17, 20, 23, 29
impedance matrix, 30
left-handed slabs, 16–20
triplet, 3
losses and dispersions, 32–34
negative refraction, 6–9
other effects, 9–12
Poynting vector, 3–6, 36, 41
slabs, \(\varepsilon/\varepsilon_0 \rightarrow -1\) and \(\mu/\mu_0 \rightarrow -1\), 20–32
wave fronts, 3–5, 10–11
wave numbers, 4, 19, 34
wave propagation, 2–4
wave vector, 6, 8, 12–15, 19, 35
Left-handed metamaterials
chiral bulk, 97–102
ferrite bulk, 92–97
split ring resonators (SRRs) bulk, 65–70, 80–88
planar transmission-line, 120–180
resonant type planar transmission line, 135–175
resonant/nonresonant planar transmission line (comparison), 175–180
Left-handed slabs
guided waves, 17–19
leaky waves, 19–20
reflection coefficients, 17
transmission coefficients, 17
with \(\varepsilon/\varepsilon_0 \rightarrow -1\) and \(\mu/\mu_0 \rightarrow -1\), 20–32
Left-handed transmission lines, equivalent circuit models, 146–155
Left-handed transmission line design, split ring resonators, 135–146
coplanar waveguide, 136
CPW technology, 139–143
microstrip line, 136, 139–143
negative permeability transmission lines, 136–138
resonant-type approach, 135
size reduction, 144–146
Left-handed triplet, 3
Left-handed waves
backward leaky modes, 19–20
complex waves, 19–20
guided waves, 17–19
surface waves, 15–16, 18
TEM waves, 3
Longitudinal section electric (LSE), 13
Longitudinal section magnetic (LSM) waves. See P-polarized waves
Losses and dispersions, 32–34
Pendry’s perfect lens, 32
super-lens, 33–34
Veselago analysis, 32
Low-loss cubic ferrites, 92
yttrium iron garnets, 92
Low-loss plasmas, 1
LSE. See Longitudinal section electric
LSM waves. See P-polarized waves
Magnetic plasma, 105
Magnetic resonances, 71
Magneto-inductive lenses, 299–302
Magneto-inductive waves (MIWs), 278–284
applications of, 285–287
equation, 279–281
surfaces, 282–284
Magnetostatic surface waves (MSSWs), 95. 295–299
Matching device, perfect lens
and, 29–32
MB. See Mono-band
Media pairs, 253
Metallic plates, 44–46
two-dimensional plasmas, 44–46
Metallic waveguides, 44–46
magnetic plasma, 105
one-dimensional plasmas, 44–46
Metamaterials, left-handed, 80–91
Metamaterial transmission lines, balanced composite right-/left-handed, 225–227
Metamaterial transmission line synthesis
compact broadband devices, 236–244
complementary split ring resonators, 163–175
equivalent circuit models, 166–170
frequency response, 172–175
left-handed transmission lines, 163–166
negative permittivity, 163–166
parameter extraction, 170–172
coupled-line couplers, 246–252
dual-band components, 244–246
microwave component miniaturization, 234–236
Microstrip, 139–143
Microwave applications, 187–258
Microwave filters, 188–233
MIWs. See Magneto inductive waves
Mono-band (MB) circuits, 244
MSSWs. See Magnetostatic surface waves
Multi-tuning, stop-band filters and, 190–191
Narrow bandpass filter, 198–207
NB-SRR. See Nonbianistropic split ring resonator
Negative Goos–Hanchen shift, 12
Negative magnetic permeability
bulk split-ring resonator metamaterials, 65–70
edge-coupled SSR, 52–59
split-ring resonator designs, 59–65
synthesis of, 51–80
Negative permeability transmission lines, 136–138
Negative permittivity transmission lines, 163–166
Negative refraction, 6–9
all-angle, 8
Negative \(\epsilon \) and \(\mu \). See Left-handed
Negative-permittivity, 44–50
spatial dispersion, 49–50
Negative refractive media. See Left-handed media
Nonbianistropic split-ring resonator (NB-SRR), 62
Non-resonant circuit analysis approach, 44
Notch tunable filters, 230–233
One-dimensional plasmas
metallic waveguides and, 44–46
One-dimensional split-ring resonator based left-handed metamaterials, 81–85
Optical frequencies, 75–80, 106–107
Open EC-SRR, 111
Parameter extraction technique, 170–172
Pendry’s perfect lens, 27–29, 32
Perfect lens, 25–32
evanescent Fourier harmonics, 26–27
tunneling/matching device, 29–32
Perfect tunneling, 21–25
Phase compensation, 20–21
Phase shifters, 244
Phase velocity, calculation of, 122
Planar arrays
complementary split ring resonator, 272–273
split ring resonator, 270–272
Planar filters, 188–233
Planar technology metamaterials, 119–180
backward transmission line, 120–128
circuit model comparison, 175–180
complementary split rings resonator (CSRR), 119
left-handed transmission lines, 135–146
three dimensional metamaterials, 132
two-dimensional (2D), 131–134
Plates, metallic, two dimensional plasmas, 44–46
PLH. See Purely left-handed transmission line
P-polarized waves. See Longitudinal section magnetic (LSM) or transverse magnetic (TM) waves, 13
PRH. See Purely right-handed transmission line
Purely left-handed (PLH) transmission line, 125, 246
dual, 125
Purely right-handed (PRH) transmission line, 125, 246
Quasielectrostatic limit imaging, 292–295
surface plasmons, 292–295
Quasimagnetostatic limit imaging, 295–299
magnetostatic surface waves, 295–299
Quasistatic resonance, 70

Racemic mixture, 97, 99
Radiated power, 254
Rat race hybrid couplers, 239–243
RCP. See Right-handed circularly polarized wave
Reflection coefficients, 17
transmission coefficients and, 13–15
Resonances, higher order, 70–73
Resonant impedance surface imaging, 299–302
magneto-inductive lenses, 299–302
Resonant-type approach, 135
Resonant-type balanced composite right/left-handed metamaterial transmission lines, 225–227
Resonant-type transmission lines, dual left-handed vs., 175–180
Right handed sections, bandpass filters and, 218–225
Right-handed circularly polarized (RCP) wave, 93

Scaling plasmas at microwave frequencies, 44–50
metallic plates, 44–46
metallic waveguides, 44–46
wire media, 47–50
Silver lens, 294
Simultaneously negative ε and μ. See Left-handed
Single split ring resonators, 268–269
Babinet principle, 268–269
Size reduction, split ring resonators and, 144–146
Slabs, ε/ε₀ → −1 and μ/μ₀ → −1, 19–32
perfect lens, 25–32
perfect tunneling, 21–25
Spatial dispersion, wire media and, 49–50
Spirals, 62–65
two-turns spiral resonator (2-SR), 62

Split-ring resonator based left-handed metamaterials, 80–91
continuous-medium approach, 87–88
modeling and numerical accuracy of, 90–91
one-dimensional, 81–84
superposition hypothesis, 88–90
three-dimensional, 85–87
two-dimensional, 85–87
Split-ring resonator metamaterials, bulk, 65–70
Split-ring resonator designs, 59–65
broadside-coupled, 60–62
chiral, 99–100
double-split, 62
nonbianistropic, 62
spirals, 62–65
Split-ring resonator planar arrays, 270–272
Split-ring resonators (SRRs), 43
admittance surfaces, 268–278
alternate right-handed/left-handed (ARLH) sections and, 199–203
Babinet principle for, 268–269
complementary, 155–163
duality, 155–163
edge-coupled, 52–59
equivalent circuit models, 52–65, 146–155
higher-order resonances, 70–73
isotropic, 73–75
left-handed transmission line design and, 135–146
negative permeability transmission lines, 136–138
resonant-type approach, 135
scaling down of, 75–80
infrared frequencies, 75–80
optical frequencies, 75–80
size reduction, 144–146
S-polarized waves, 13. See Longitudinal section electric (LSE); Transverse electric (TE)
Spurious frequency bands, 193–197
SRRs. See Split ring resonators
Stop-band filters, 189–193
electromagnetic band gap (EBG) transmission line, 191–192
multi-tuning, 190–191
Subdiffraction imaging devices, 287–303
 canalization devices, 302–303
 features of, 288–292
 ferrite lens, 296
 magnetostatic waves, 295–297
 resonant impedance surfaces, 299–302
 silver lens, 294
 surface plasmons, 292–295
Super-lens, 33–34
Veselago, 34
Superposition hypothesis, 88–90
Surface plasmons, 16, 292–295
Surface waves, 15–16, 18
 magnetostatic, 295–299
 s-polarized, 16
Symmetric resonances, 71
Synthesis of negative magnetic permeability, 51–80
Synthesis, bulk metamaterials, 43–109
TEM. See Transverse electromagnetic mode propagation
Three-dimensional SRR-based left-handed metamaterials, 85–87
TM waves. See P-polarized waves
Transmission coefficients, 17
Transmission, reflection coefficients and, 13–15
Transmission lines, negative permeability, 136–138
Transverse electric (TE) waves, 13
Transverse electromagnetic (TEM) mode propagation, 123–124
Transverse magnetic (TM) waves. See P-polarized waves
Tunable filters, 227–233
 notch type, 230–233
 varactor-loaded split rings resonators (VLSRRs), 227–233
Tunneling
 perfect, 21–25
 perfect lens and, 29–32
2-SR. See Two-turns spiral resonator
2-SRR. See Double-split split ring resonator
Two dimensional left handed structure, lumped elements and, 131–132
Two dimensional metamaterials
 bulk SRR based, 85–87
 planar technology, 131–135
Two dimensional plasma
 metallic plates and, 44–46
Two-turns spiral resonator (2-SR), 62
Ultra-wide bandpass filter (UWBPF), 219–222, 225–227
 resonant-type balanced composite right/left-handed metamaterial transmission lines, 225–227
UWBPF. See Ultra-wide bandpass filters
Varactor-loaded split rings resonators (VLSRRs), 227–233
 equivalent circuit model, 228–230
 model validation, 230
 topology of, 228–230
Veselago
 analysis, 32
 lens, 34
 media, 2
VLSRRs. See Varactor-loaded split rings resonators
Wave impedance, 14
Wave propagation, 2–4
Wave transmission and guidance, left-handed slabs and, 16–20
Waveguides, metallic
 as one dimensional magnetic plasmas, 105
 as one dimensional plasmas, 44–46
Waves at interfaces, 13–16
 surface, 15–16
 transmission and reflection coefficients, 13–15
Wire media, 47–50
 spatial dispersion in, 49–50
YIG. See Yttrium iron garnets
Yttrium iron garnets (YIG), 92