Contents

Contributors xi
Preface xiii

1 Similarities and differences in the pathophysiology of asthma and COPD 1

J. Christian Virchow

1.1 Introduction 1
1.2 Pulmonary function abnormalities in asthma and COPD 3
1.3 Risk factors for asthma and COPD 5
1.4 Cellular inflammation in asthma and COPD 8
1.5 Distribution and consequences of inflammation in asthma and COPD 9
1.6 Patterns of epithelial injury in asthma and COPD 10
1.7 Airway hyperresponsiveness 10
1.8 Beta-receptor blockers 12
1.9 Differential diagnosis of asthma and COPD 12
1.10 Overlap syndrome 12
1.11 Conclusion 12
References 13

2 Glucocorticoids: pharmacology and mechanisms 16

Peter J. Barnes

2.1 Introduction 16
2.2 Chemical structures 16
2.3 The molecular basis of inflammation 17
2.4 Cellular effects of glucocorticoids 19
2.5 Glucocorticoid receptors 20
2.6 Glucocorticoid activation of gene transcription 22
2.7 Suppression of inflammatory genes 23
2.8 Steroid resistance 29
2.9 Interaction with β2-adrenergic receptors 32
2.10 Conclusions 33
References 33

3 Inhaled corticosteroids: clinical effects in asthma and COPD 38

Paul M. O’Byrne and Desmond M. Murphy

3.1 Introduction 38
3.2 Anti-inflammatory activity of corticosteroids 38
3.3 Routes of administration 39
CONTENTS

3.4 Absorption and fate of corticosteroids
3.5 Currently available inhaled corticosteroids
3.6 Efficacy in asthma
3.7 Efficacy in COPD
3.8 Side effects of ICS
3.9 Conclusions

References

4 LABAs: pharmacology, mechanisms and interaction with anti-inflammatory treatments

Gary P. Anderson

4.1 Galenical forms of LABAs: formulations, isomers, enantiomers, diasteriomers and salts
4.2 Absolute and functional β₂-adrenoceptor selectivity
4.3 Cellular organization of receptor clusters: functional structure of the β₂-adrenoceptor and mode of signalling
4.4 Dimers and oligomers: homo- and heterodimerism/oligoism
4.5 Pharmacogenomics of the β₂-adrenoceptor and adenylate cyclase polymorphism in relation to LABAs
4.6 Understanding the ‘reassertion’ paradox, ‘exosites’ and relative speed of onset: the membrane diffusion microkinetic model of LABA action
4.7 Regulation and desensitization
4.8 Full versus partial agonism (pharmacological efficacy)
4.9 Beta-blockers not LABAs?
4.10 Non-receptor-mediated effects?
4.11 Biochemical basis of functional antagonism and its critical role in LABA action in disease and exacerbations
4.12 Molecular cooperativity between LABAs and steroids
4.13 Perspective

References

5 Long- and ultra-long-acting β₂-agonists

Mario Cazzola and Maria Gabriella Matera

5.1 Introduction
5.2 Long-acting β₂-agonists
5.3 Novel ultra-long-acting β₂-agonists
5.4 Conclusion

References

6 The safety of long-acting beta-agonists and the development of combination therapies for asthma and COPD

Victor E. Ortega and Eugene R. Bleecker

6.1 Introduction
6.2 Asthma-related mortality and beta-agonist exposure
6.3 Long-acting beta-agonists and increased asthma-related mortality
6.4 Safety and efficacy of LABA therapy in asthma: retrospective analyses

References
CONTENTS

6.5 Efficacy of LABA therapy as a component of combination therapy with ICS for the management of asthma 110
6.6 Scientific basis of the beneficial and adverse effects of beta-agonist therapy: *in vitro* data and the beta-agonist paradox 113
6.7 Conclusions regarding the safety of LABA therapy as a component of combination therapy with ICS for the management of asthma 114
6.8 Beta-agonist therapy and adverse events in COPD 115
6.9 Safety and efficacy of LABA therapy in the management of COPD: the clinical evidence 116
6.10 Role of LABA therapy as a component of combination therapy with ICS for the management of COPD 117
6.11 Conclusions regarding the safety of LABA therapy as a component of combination therapy with ICS for the management of COPD 120
6.12 Pharmacogenetics of LABAs and combination therapy 120
6.13 Safety and efficacy of LABA therapy and the development of combination therapies for the management of asthma and COPD 126
6.14 Summary and future directions 127
Acknowledgement 128
References 128

7 **Inhaled combination therapy with glucocorticoids and long-acting β₂-agonists in asthma and COPD, current and future perspectives** 135

Jan Lötvall

7.1 Pharmacological management guidelines of asthma and COPD 135
7.2 Steroid treatment in asthma 136
7.3 Effects of adding LABA to inhaled glucocorticoids in asthma 137
7.4 Steroid treatment in COPD 140
7.5 Effects of LABAs in COPD 140
7.6 Combination inhalers versus two separate inhalers for inhaled GCS and LABAs 141
7.7 Regular treatment alone versus additional formoterol-containing combinations as reliever therapy 143
7.8 Currently available combination inhalers 145
7.9 Upcoming and alternative combinations of inhaled GCS and LABAs 146
7.10 Future of combined inhalation therapy in respiratory disease 148
References 149

8 **Novel anti-inflammatory treatments for asthma and COPD** 154

Paul A. Kirkham, Gaetano Caramori, K. Fan Chung and Ian M. Adcock

8.1 Introduction 154
8.2 Current asthma and COPD therapies 158
8.3 The need for new therapies 160
8.4 Improving current therapies 162
8.5 Targeting chemokines and their receptors in asthma and COPD 166
8.6 Targeting T-cell-derived and proinflammatory cytokines in asthma and COPD 169
viii CONTENTS

8.7 Targeting adhesion molecules in asthma and COPD 172
8.8 Growth factor blockers in asthma and COPD 173
8.9 Mucous cells, submucosal glands and mucus production in asthma and COPD 173
8.10 Infections in asthma and COPD 174
8.11 Intracellular signalling pathways 175
8.12 Inhibition of transcription factors in asthma and COPD 178
8.13 Antioxidants in asthma and COPD 181
8.14 Immunomodulation and anti-allergy treatments in asthma and COPD 182
8.15 Conclusions 185
Acknowledgements 186
References 186

9 Novel biologicals alone and in combination in asthma and allergy 203
Sharmilee M. Nyenhuis and William W. Busse

9.1 Introduction 203
9.2 Targets of therapy 204
9.3 Interleukin-4 207
9.4 Interleukin-5 207
9.5 Interleukin-13 211
9.6 Tumor necrosis factor-α 212
9.7 Immunoglobulin E 215
9.8 DNA vaccines 220
9.9 Future directions 222
9.10 Conclusion 224
References 225

10 Anti-infective treatments in asthma and COPD 232
Jonathan D.R. MacIntyre and Sebastian L. Johnston

10.1 Introduction 232
10.2 Current guidelines 234
10.3 Acute exacerbations of asthma 236
10.4 Increased susceptibility to infection in asthmatics 236
10.5 Role of atypical bacteria in asthma 237
10.6 Role of viruses in asthma exacerbations 244
10.7 Anti-infectives in COPD exacerbations 250
10.8 Use of antibiotics in stable COPD 256
10.9 Role of vaccination 257
10.10 Conclusion 259
References 260

11 Long-acting muscarinic antagonists in asthma and COPD 268
M. Diane Lougheed, Josuel Ora and Denis E. O’Donnell

11.1 Introduction 268
11.2 Innervation of the airways 268
CONTENTS

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.3 Cholinergic mechanisms in asthma and COPD</td>
<td>270</td>
</tr>
<tr>
<td>11.4 Role of long-acting anticholinergic bronchodilators in obstructive lung disease</td>
<td>271</td>
</tr>
<tr>
<td>11.5 Summary</td>
<td>287</td>
</tr>
<tr>
<td>References</td>
<td>288</td>
</tr>
<tr>
<td>12 Phosphodiesterase inhibitors in obstructive lung disease</td>
<td>296</td>
</tr>
<tr>
<td>Jan Lötvall and Bo Lundbäck</td>
<td></td>
</tr>
<tr>
<td>12.1 Introduction</td>
<td>296</td>
</tr>
<tr>
<td>12.2 Phosphodiesterase enzymes</td>
<td>297</td>
</tr>
<tr>
<td>12.3 Different pharmacological agents blocking PDE4</td>
<td>298</td>
</tr>
<tr>
<td>12.4 Biological effects of PDE4 inhibition, preclinical information</td>
<td>300</td>
</tr>
<tr>
<td>12.5 Clinical effects of PDE4 inhibition in COPD</td>
<td>302</td>
</tr>
<tr>
<td>12.6 Effects of PDE4 inhibitors on systemic processes in COPD</td>
<td>304</td>
</tr>
<tr>
<td>12.7 Side effects of PDE4 inhibitors</td>
<td>304</td>
</tr>
<tr>
<td>12.8 PDE4 inhibitors in COPD management plans</td>
<td>305</td>
</tr>
<tr>
<td>12.9 Future prospects with PDE4 inhibitors in obstructive airways disease</td>
<td>305</td>
</tr>
<tr>
<td>12.10 Summary</td>
<td>306</td>
</tr>
<tr>
<td>References</td>
<td>306</td>
</tr>
<tr>
<td>13 Biological therapies in development for COPD</td>
<td>311</td>
</tr>
<tr>
<td>J. Morjaria and R. Polosa</td>
<td></td>
</tr>
<tr>
<td>13.1 Introduction</td>
<td>311</td>
</tr>
<tr>
<td>13.2 Inflammatory cells involved in the pathogenesis of COPD</td>
<td>312</td>
</tr>
<tr>
<td>13.3 Cytokines and chemokines in COPD</td>
<td>315</td>
</tr>
<tr>
<td>13.4 Development of biological agents in COPD</td>
<td>320</td>
</tr>
<tr>
<td>13.5 Conclusions</td>
<td>323</td>
</tr>
<tr>
<td>References</td>
<td>323</td>
</tr>
<tr>
<td>14 ‘Triple therapy’ in the management of COPD: inhaled steroid, long-acting anticholinergic and long-acting β₂-agonist</td>
<td>333</td>
</tr>
<tr>
<td>Ronald Dahl</td>
<td></td>
</tr>
<tr>
<td>14.1 Introduction</td>
<td>333</td>
</tr>
<tr>
<td>14.2 Long-acting inhaled anticholinergic (LAMA) and β₂-agonist (LABA) bronchodilators</td>
<td>333</td>
</tr>
<tr>
<td>14.3 Treatment strategies for COPD</td>
<td>334</td>
</tr>
<tr>
<td>14.4 Inhaled corticosteroids and COPD</td>
<td>334</td>
</tr>
<tr>
<td>14.5 Combination treatment with ICS, LAMA and LABA: ‘triple therapy’</td>
<td>335</td>
</tr>
<tr>
<td>14.6 Extracted data from TORCH and UPLIFT studies</td>
<td>337</td>
</tr>
<tr>
<td>14.7 Conclusions</td>
<td>340</td>
</tr>
<tr>
<td>References</td>
<td>341</td>
</tr>
<tr>
<td>Index</td>
<td>343</td>
</tr>
</tbody>
</table>