Index

Note: Page numbers in *italics* refer to Figures; those in **bold** to Tables.

‘absolute’/‘hard’ logic, 267
acceleration, 354–5
activity centred approach, 37
activity selection
 at contract stage, 97
 levels of density, 96
 at pre-contract stage, 97
 at tender stage, 97
actual cost of work performed (ACWP), 160, 161, 165
additional delay modelling, 254, 254
ADePT see Analytical Design Planning Technique (ADePT)
Analytical Design Planning Technique (ADePT)
 collaborative planning, 186
 constraints and progress, 189
 construction/procurement schedule, 188
data flow diagrams, 75
Design and Build form, 183
design management, 183
design manager, 187
detailed building design, generic model, 75–6
DSM analysis, 76–9
effective design delivery, requirements, 183–4
iteration activities, 188
Lean Construction approach, 189
management information, 186, 187
‘matrix modelling’ techniques, 182
methodology, 184, 184
PPC, 191
process sequencing, 185
production of design information, 184
project and departmental schedules, 79
reporting design production, 189, 190
Rethinking Construction Report, 183
scheduling, 185–6, 186
scope of design process, 184, 185
staff positions, 183
workflow design, 186
workshops, 188
as-built/progress records
 accuracy, 271–2
 delay analysis, 269–70
 management, project, 269
 SCL model, 270
 ‘S-curve’, 272
 start and finish dates, 272
as-built schedule
 activities, 272
 add, logic, 275
 as-planned, 273
 bar chart, 273, 274
as-planned schedule
 activity durations, 264
 additional activities, 265–6
 bar chart, network, 267–9
 constraints, 263–4
 contract dates, 262
as-planned schedule (cont’d) contract documentation, 260
critical path analysis and project management software, 261
logic links, 262–3, 263
missing activities, 265
‘schedule density’, 260–261
scope changes, 266
sequence, activities, 264–5
software, 266–7
as-planned versus as-built method advantages, 290–291
cause and effect, delaying events, 289
Cleveland Bridge v Severfield-Rowen, 325
critical path, project, 289
refinements, 290
as-planned versus as-built #2/time slice analysis, 326–7
Association for the Advancement of Cost Engineering International (AACEI) baseline selection, validation and rectification, 268–9 launched, RP/forensic schedule analysis project see Recommended Practice (RP)

BAC see budget at completion (BAC)
bar charts, 55–6
BCWP see budgeted cost of work performed (BCWP)

BIM see building information modelling (BIM)
BIM Handbook, 193–4
BIM management for value, cost and carbon improvement, 195
‘blindsight’ approach, 301
BREEAM see British Research Establishment’s Environmental Assessment Method (BREEAM)

British Research Establishment’s Environmental Assessment Method (BREEAM)
BREEAM 2011, 209
case study analysis projects/management situations, 213–14
spreadsheets, 213
demand, sustainable buildings, 207
description, 207
establishment scores, 207–8
industry response
BREEAM IN-USE, 213
D&B basis, 212
parties and stakeholders, 212
Sustainable Times, 212
ratings, 208
sections
credits and CO₂ index, 210, 210
energy, 209–10
health and wellbeing, 209
innovation, 211
land use and ecology, 211
management, 209
materials, 211
pollution section, 211
transport, 210
waste, 211
water section, 210
and weightings, 208, 208
stages of assessment
design stage (DS), 208
post-construction stage (PCS), 208–9
sustainability, individual perceptions
environmental sustainability, 215
principle problems, 214
sustainable construction
client (market-led) requirements, 206
competitors, 206–7
green (or sustainable) buildings, benefits, 205
legislative drivers, 205–6
professional responsibility, 206
Rethinking Construction, 204–5
strategy, themes of action, 205
use of resources, 205
budget at completion (BAC), 159, 161, 163
budgeted cost of work performed (BCWP), 160, 161, 165
building information modelling (BIM) beyond 3D modelling, 192–3
BIM Handbook, 193–4
construction organisations, 193
construction planning and scheduling, 202–3
4D CAD, development see 4D CAD, development definition, 192
Digital Project™, 193
and English Law see English Law ‘intelligent objects’, 192
legal risks and responsibilities, 203
maturity levels, 195–7, 196
One Island East see One Island East potential advantages, 194, 194–5
‘translation software’, 193
use of 3D CAD modelling, 193
virtual construction
high-rise residential building, requirements, 200, 201, 202
model building phase, 200–202, 201
process simulation phase, 201, 202
requirement collection phase, 200, 201
and virtual prototyping, 6

calendars
effects, delay to project completion, 343–4
planned, progress and rescheduled activity data, 341, 342
planned schedule, progress on 21 February, 341, 342
reanalysed schedule, 21 February, 341, 343
seven-day calendar approach, 344, 345
start and finish detail, piling, 341, 343
CCFB see critical chain feeding buffer (CCFB)
CCPM see Critical Chain Project Management (CCPM)
CEGB see Central Electricity Generating Board (CEGB)
Central Electricity Generating Board (CEGB), 4
Chartered Institute of Building (CIOB)
framework, 13, 14
PEP see project execution plan (PEP)
stages and key actions, 15, 16
stages, project lifetime, 13
CIOB see Chartered Institute of Building (CIOB)
collaborative planning
behaviors, 362–3
Daily Huddle, 365
forward, 363, 365
programme, 363
Shepherd collaborative, 363, 364
types, construction, 366
way of working, 362
weekly, 365
Collaborative Planning, Forecasting and Replenishment (CPFR), 46
collaborative working approach, 46
collapsed as-built method
as-built schedule, 317
individual extraction, 318–19, 319–23
single extraction, 318
concurrent delay
apportionment, 351, 351–2
dominant cause, 350, 351
first in line, 349–50, 350
SCL protocol, 348
constraints
flexible, 101, 102
inflexible, 101, 102
moderate, 101, 102
construction industry, UK
Banwell Report 1964, 28
documents list, planner, 32, 33
domain specific knowledge, planners, 32, 33
methods, uncertainty, 32
partnering, 30–31
PFI, 31
recommendations, 28–9
construction projects management
collaborative working, 46–7
lean see lean construction
Morries, Peter, 47
PMBOK see Project Management Body of Knowledge™ (PMBOK)
schools of thought, 47–9, 48–9
simultaneous management, 41–2
TOC see theory of construction (TOC)
construction waste causes and origins
design, 218
materials procurement, 217–18
operations, 218–19
project phase, 217, 217
contingency, 109–10, 110
contractors’ cash flow
bank borrowings, 136
delay in payment, 137–8
graph of contract value, 137
head office overheads, 136
improvements, 138–9
measurement and certification interval, 137
payment terms, 135, 136
for project, calculation, 136–7, 138
project costs, 138
working capital, 136–9
contractor schedule, 355
contractors price risk, 143–6
contract planning
cost/value reconciliation, 95
monthly (long-term) planning, 94–5
reporting to management, 95–6
review/update of health and safety plans, 96
weekly (short-term) planning, 95
control theory, 43
cost optimisation, 125–6, 126
Cost Performance Index (CPI), 159, 163, 165
CPA see critical path analysis (CPA)
CPFR see Collaborative Planning, Forecasting and Replenishment (CPFR)
CPI see Cost Performance Index (CPI)
CPM see critical path method (CPM)
critical chain feeding buffer (CCFB), 153
Critical Chain Method, 177
critical chain project management (CCPM)
adoption, 156
CCFB, 153
construction team, 155
creation, ‘project buffer’, 6
critical sequence concept, 156
duration of activities, 153, 154
estimate duration, 152–3, 154
and Last Planner, 6
less supportive, 156
PERT, 155
PMBOK, 152
project buffer, 153, 154
resource management, 156
resource requirements, 153
scheduled time, 155
supporters, 155–6
TOC, 151
critical path analysis (CPA)
definition, 4
planning and scheduling system, 5
critical path method (CPM)
CEGB, 4
CPA, 4, 5
delays analysis, disputes, 339
disadvantages, 6
PERT, 142
critical sequence concept, 156
date delay modelling, 251–2, 252
4D CAD, development
BIM Handbook, 4D tools, 199
contractor, advantages, 199
3D CAD models, 197
4D simulation, 197
four-dimensional tool, 198, 199
interoperability, 200
manual/CAD-based 4D modelling process, 198, 198
virtual prototyping or construction, 200
3D CAD modelling, 193
delays
additional, 254, 254
construction contracts, 250
date, 251–2, 252
and disruption, 249–50
events, categorization, 251
extended, 252–3, 253
fragnets, 256, 257
progress, 254–5, 255
sequence, 255–6, 256
total, 252, 253
Department for Education and Skills (DfES), 206
dependency structure matrix (DSM)
analysis, 76–9
design and build (D&B) basis, 212
DfES see Department for Education and Skills (DfES)
Digital Project™, 193
disruption
and loss of efficiency, causes, 329, 330
MCAA, labour estimating manual, 335, 336
methods of analysis see methods of analysis, disruption
SCL Protocol and AACEI RP, 328–9
4D planning, 6
5D planning, 6
DSM see dependency structure matrix (DSM) analysis
duration of activity, assessment, 99, 100
earned value (EV)
definition, 160
ratio, 159, 160
earned value analysis (EVA)
ACWP, 160
BAC, 159
BCWP, 160
benefits, 168–9
budgeted cost, work scheduled, 159
cost variance, 159
CPI, 159
disadvantages, 168
EV, 160
EVM, 159
EVMS, 159
forecast completion date and budget, 164, 164
formulae, calculations, 163
implementation, 170
items of work, 167, 167
measurements, 158
performance measurement baseline, 160
planned and actual cost, time of review, 161, 162
principles, 169
PV see planned value (PV)
Schedule Performance Index, 163
schedule updated, progress, 165, 166
SPI, 160
SV, 160
time schedule, work with added budget data, 165, 165
earned value management (EVM)
definition, 159
implementation, 168
principles, 169
earned value management system (EVMS)
EVM, 168
implementation, 167
monitoring, 167
ECI see European Construction Institute (ECI)
employer/contractor/subcontractor schedules, 355–6
employer schedule, 355
English Law
BIM Protocols and execution plans, 368
ConsensusDOCS 301 BIM Addendum, 369
GCCG, 368
information manager, 369–70
legal and contractual implications, 367
European Construction Institute (ECI)
environmental guide, 245
sections, SHE-MM, 229, 230
EV see earned value (EV)
EVA see earned value analysis (EVA)
EVM see earned value management (EVM)
EVMS see earned value management system (EVMS)
execution theory, 43
extended delay modelling, 252–3, 253
factual information
as-built/progress records, 269–72
as-built schedule, 272–5
as-planned schedule see as-planned schedule
float
free float, 104, 105
independent float, 105–6, 106
interfering float, 105, 105
intermittent float, 106, 106–7, 107
internal float, 108–9
manipulation, 110–111
negative float, 107–8
ownership, 111
terminal float, 108, 108
total float, 103–4, 104
flow diagrams
charts, 56–7
work study, 57–9
forensic schedule analysis project, 279
fragnet modelling, 256, 257
GCCG see Government Construction Client Group (GCCG)
global time claims
characterisation, 286
‘impressionistic’, 287
recommendation, SCL Protocol, 287
rejection, Wharf Properties v Eric Cumine, 286
scatter diagram, 287, 288
‘unparticularised’, 286
Government Construction Client Group (GCCG), 368, 369
‘green labels’, 206
‘hindsight’ approach, 301
impacted as-planned method
individual insertion, 292–300, 293–9
list and categories, delaying events, 291
SCL Protocol, 291
single insertion, 291–2
job safety analysis (JSA), 244–5
‘just-in-time’ delivery, 220
Kyoto Protocol, 206
Last Planner® System (LPS)
barriers to adoption, 180–181
benefits, 179–80
collaborative planning, 173
Constraints Removal, 171
construction planning, 172–3
CPM, 172
definition, 171
PPC, 172
principles
‘Conditions of Satisfaction’, 175
‘construction flows’, 174
‘lookahead’ review process, 174
‘promise conversation cycle’, 175
‘5 Whys’ technique, 175
production control, 172
production performance analysis, 179
‘pull-type’ system approach, 172, 173, 174
‘push’ planning system, 173, 173
‘reliable promising’, 171
stages
collaborative programming, 175, 177
Critical Chain Method, 177
‘declare completion’ of task, 178–9
flow chart, 175, 176
Last Planner® System (LPS) (cont’d)
 initial programming, 175
 lookahead/make ready stage, 177–8
 production planning, 178
 programme compression, 177
 programming workshop, 177
 promise cycle, 178, 178
 workshops, 171
lean construction
 approach, 189
 execution and control theories, 43
 integrated TFV view, production, 42, 43
 objectives, 44
 planning theory, 42
 root theory, 44
 theoretical foundation, project management, 42, 43
Leonard/Ibbs curves disruption analysis
 causes, 332
 civil and architectural projects, 332, 333
 Ibbs graph, 334, 334, 335
 mechanical and electrical work, 332, 333
line of balance (LOB)
 resource scheduling, 73
 software for producing, 74
linked bar charts, 65
 and dependencies, 101
 description, 100–101
 linked activities, 101, 101
LOB see line of balance (LOB)

matrix, 54
MCAA see Mechanical Contractors Association of America (MCAA)
measured mile, disruption analysis
 calculation, 331, 331
 examination, records, 332
 productivity, 329–30
Mechanical Contractors Association of America (MCAA), 335, 336
 methods of analysis, delay and disruption activities, delaying events and schedules, 285–6
 agreement, technique, 284–5
 as-planned versus as-built, 289–91, 325
 as-planned versus as-built #2/time slice, 326–7
 collapsed as-built, 317–24
 contract requirements, 283
 expertise of analyst and familiarity, technique, 284
global time claims, 286–8
 impacted as-planned see impacted as-planned method
 nature and complexity of dispute and delaying events, 284
 schedule, information and records, 284
 time, cost and amount in dispute, 284
 time impact see time impact analysis windows, 319–25
methods of analysis, disruption
Leonard/Ibbs curves, 332–5
 measured mile see measured mile, disruption analysis
method statements
 construction or work method statement, 128, 129
 format, 127
 health and safety method statement, 128, 129–30, 131, 132
 planning method statement, 128, 130, 132, 133, 134
 tender statement (external), 127, 128
 tender statement (internal), 128, 129
The Ministry of Defence (MoD), 206
mitigation
 activities, 354
 calendar delays, 353
 ‘prospective’ technique, 353
 SCL Protocol, 352–3
MoD see The Ministry of Defence (MoD)
Monte Carlo Simulation, 142–3, 143, 155

National Health Service (NHS), 206
network analysis, 59–60
NHS see National Health Service (NHS)
omissions, 340–341
One Island East
 design team, 359, 359
 Gehry Technologies Digital Project® software, 358–9
 planning, scheduling and visualisation, 360–361
 tendering process, 360
on-site waste management
 techniques, 220–221
 WRAP, 219
‘operation oriented’ approach, 264
out-of-sequence progress, 337
 pacing, 352
 partnering, 30–31
PC see personal computer (PC)
PEP see project execution plan (PEP)
periodic status reviews (PSR), 229, 230, 243
personal computer (PC), 5–6
PERT see Program Evaluation and Review Technique (PERT)
PFI see Private Finance Initiative (PFI)
‘plan–do–check–act cycle’, 40, 40
planned percentage complete (PPC), 172, 189
planned value (PV)
actual cost and EV curves, project, 161, 162
actual cost and EV, time of review, 161, 162
and actual cost, time of review, 161, 162
curve and BAC, 161, 161
planning and scheduling
activity, mind, 11–12
characteristics, procurement options, 25, 26
construction client, 23, 23
construction industry, UK, 28–31
contractor, construction, 23, 24, 33
contractor’s organisation, 8
cost and benefits, 10
critical path methods, 4–5
Gantt chart, 4
hierarchy, construction project, 27, 27
information and communication technologies, 6–7
methods, procurement, 24–5
PC, 5–6
and programming, 8–9
project cycle see project cycle, planning process
projects, construction, 12–13
selection, procurement route, 25, 25
Taylor’s work and philosophy, phases, 3
types, 11
writers and researchers, construction, 7–8
planning and scheduling practices
activity selection, 96–7
assessing duration of activity, 99
contingency, 109–10
contractors’ cash flow, 135–9
contractors price risk, 143–6
contract planning, 94–6
cost optimisation, 125–6
float, 102–11
links, dependencies and constraints, 100–102
method statements, 127–32
monitoring progress and managing time model, 111–21
pre-contract planning, 92–4
pre-tender planning, 85–92
resources, 122–5
risk management
analysis, 141
definition, 140
identification, 141
Monte Carlo Simulation, 142–3, 143
PERT, 142
qualitative analysis techniques, 141
quantitative risk analysis, 141, 142
responses, 143, 144
schedule design and structure, 81–4
sequencing, 98–9
site layout plans, 132–4
uncertainty, 139
WBS, 84–5
WSMP, 134
planning and scheduling techniques
activity-on-arrow networks, 60–63
ADePT see Analytical Design Planning Technique (ADePT)
bar charts, 55–6
4D CAD, 79
flow diagrams
charts, 56–7
work study, 57–9
linked bar charts, 65
LOB see line of balance (LOB)
matrix, 54
network analysis, 59–60
network-precedence diagrams, 63–5
space diagrams
limitations of time chainage charts, 68–9
multiple activity charts, 69–70
time chainage charts, 65–8
time management, 53
Planning for sustainability see British Research Establishment’s Environmental Assessment Method (BREEAM)
planning theory, 42
PMBOK see Project Management Body of Knowledge™ (PMBOK)
PMI see Project Management Institute (PMI)
PMO see project management organization (PMO)
PPP see Public Private Partnership (PPP)
precedence diagrams, 63–5
pre-contract planning issues, 94
master schedule, 93
planner, 93
site planning, 92
‘preferential’/‘soft’ logic, 267–8
pre-tender planning
activities, 90–91
bill of quantities, analysis, 88–90
complexity of the project, 88, 88
construction contractors, 86–7
construction method/programme, 87
forms of procurement, 86
key project dates, 90
methods of construction, 91–2
schedule events, 90
scope of works, assessment, 87–8
site visit, 91
tender documentation, 89, 89–90
at tender stage, 89
Prison Service, 206
private finance initiative (PFI), 31, 32, 183
process protocol map
extract, 20, 22
structure, 20, 21
product-based planning approach, 15
Program Evaluation and Review Technique
(PERT), 4, 155
progress delay modelling, 254–5, 255
progress monitoring and time model
management
activities currently in progress, 114–15
activity schedules, 120
cash flow monitoring, 120
client, reporting requirements, 112, 112–13
contingencies and working schedule, 119
earned value analysis, 121
intervening events, 117–18, 118
methods of monitoring progress, 119–20
planned progress monitoring, 120–121, 121
production records and progress
reports, 114
progress and forecasting completion, 119
schedule, assumptions, 113
small- and medium-sized projects, 113
updating schedule, 115–17, 116
progress override, 338, 338
project cycle, planning process
CIOB see Chartered Institute of Building
(CIOB)
life-cycle, 13, 14
PRINCE2, 14–15
process protocol map, 19–22
RIBA Plan of Work, 17, 19, 20
project execution plan (PEP)
code of practice, 15, 17, 18
contents, 15–16
Project Management Body of Knowledge™
(PMBOK)
activity centred approach, 37
deficiencies, assumption and theory, 37, 39
‘plan–do–check–act cycle’, 40, 40
PMI, 36
theories, PM approach, 37, 38–9
Project Management Institute (PMI),
36, 37, 95, 152
project management organization (PMO)
exection, SHE and contingency plans, 229
SHE process, 230, 230
statements, 242, 244
‘promise conversation cycle’, 175
prospective versus retrospective analysis
blindsight and hindsight, 258
contracts, ‘condition precedent’ clauses, 257
critical path analysis, 258–9
PSR see periodic status reviews (PSR)
Public Private Partnership (PPP), 183
PV see planned value (PV)
recommended practice (RP)
AACEI, sections, 280
common names, methods of analysis, 280, 282–3
methods of analysis and required factual
material 2, 280, 283
taxonomy and nomenclature hierarchy,
AACEI, 280, 281
resources
aggregation, 122, 123
levelling, 123, 124–5
smoothing, 123, 123–4
retained logic
adjusted schedule, 339, 340
CPM, 340
extended completion date, 339, 339
reanalysis, 338, 339
Rethinking Construction Report, 183
RIBA see Royal Institute of British Architects
(RIBA)
Royal Institute of British Architects (RIBA)
phases, 17
work stages, 17, 19, 20
RP see recommended practice (RP)
safety, health and environment (SHE) see
SHE management model (SHE-MM)
schedule design and structure
creation, 84
level 1 schedule report, 81–2, 82
level 2 schedule report, 82, 82
level 3 schedule report, 82, 82–3
level 4 schedule report, 82, 83
level 5 schedule report, 82, 83
smaller projects, 82, 83–4
Schedule Performance Index (SPI), 160, 163, 165, 166
schedule variance (SV), 160, 163, 165
scheduling see planning and scheduling
SCL see Society of Construction Law (SCL)
SCM see supply chain management (SCM)
sequence delay modelling, 255–6, 256
sequencing
construction operations, 98
4D sequencing software, 99
traditional CPMs, 99
SHE management model (SHE-MM)
constructability reviews, 243–4
construction risk assessments, 243
contents, 240–242, 242
design hazard identification and risk
assessment, 233–8, 239
development, headings, 239
emergency preparedness, 245
environment, 245
hazard/risk identification and control, 231
JSA, 244–5
method statements, 244
PMO process, activity phases, 230, 230
programme, occupational path, 242
right info, people, time, 243
sections, ECI’s, 229, 230
sections, guide, 228–9
six-stage approach, 231, 232
SHE-MM see SHE management model
(SHE-MM)
Shepherd Way and collaborative planning
see collaborative planning
SHE six-stage approach, 231, 232, 239
simultaneous management, construction
projects, 41–2
site layout plans
contract stage, 134
pre-contract stage, 134
tender stage, 132, 134
site waste management plans (SWMPs)
amendments, 223, 224
construction see construction waste causes
and origins
environmental problems, 216–17
implementation, 223, 224
interviewees, designers, 225
on-site, 219–21
phase, construction, 226
production and minimisation, project stages,
223, 224
requirements, 221–2
research, waste reduction, 226
respondents, rate on scale, 222, 223
statutory requirements, 216
‘triangulated method’, data collection, 222
Society of Construction Law (SCL)
concurrent delay, 348
drafting subcommittee, 276
methods, analysis and required factual
material 1, 278, 278
‘model records clause’, 270
protocol, core principles, 277
retrospective delay analysis, 277
‘windows analysis’, 279
space diagrams
multiple activity charts, 69–70
time chainage charts
description, 65–8
limitations, 68–9
SPI see Schedule Performance Index (SPI)
subcontractor schedule, 355
supply chain management (SCM), 46
SV see schedule variance (SV)
SWMPs see site waste management
plans (SWMPs)
TFV model see transformation flow-value
(TFV) model
theory of construction (TOC)
Last Planner and critical chain, 45, 46
planning, 45
projects approach, 44
time impact analysis
‘blindsight’ approach, 301
concurrent delay, 315
design approval, 303–17, 304–14
disadvantages, 317
method of implementation, 300
mitigation, 315–16
progress, 316
SCL, 300–301
sequence, modelling, 315
stages, 301–2
windows, 325–6
‘time model’, 52
TOC see theory of construction (TOC)
total delay modelling, 252, 253
transformation flow-value (TFV) model
 integrated view, production, 42, 43
 and root theory, lean construction, 44
UN Framework Convention on Climate
 Change (UNFCCC), 206
virtual prototyping/construction, 6–7
Waste and Resources Action Programme (WRAP)
 Net Waste Tools, 221, 225–6
 training, personnel, 220
 working, contractors, 219
WBS see work breakdown structure (WBS)
weather
 contracts, clauses, 345
 measurement, 345
 principal methods, 346–8
 weather-based delay, 346
‘5 Whys’ technique, 175
windows method, 319–25
work breakdown structure (WBS)
 definition, 84–5
 functional, 85, 85
 and levels of reporting, links, 85, 86
‘working schedule’, 355
WRAP see Waste and Resources Action
 Programme (WRAP)