INDEX

1/f noise, 141
90° hybrid, 234

AES, advanced encryption standard, 287

APD
avalanche gain, 138, 183f
optimum gain, 138, 184
responsivity, 138
structure, electric field, 138

AWG
athermalization, 117
as CD compensator, 111
column-row conversion, 115
cyclic AWG, 117, 262, 265f
cyclic AWG wavelength bands, 265
FSR, 116, 262
temperature drift, 117
transfer function, 117
in WDM-PON, 261ff
AWGN channel, 151, 154, 206

Backward propagation, 240
Binary symmetric channel, 151, 154
Bragg wavelength
DBR laser diodes, 63
FBG, 118f
volume holographic grating, 123f
Bubble switch, 127
Buffer credits, 277ff

CD compensation, 104ff
DCF, 104ff, 297f, 301f, 304f
dispersion map, 30ff, 45, 300ff, 313
EDC, 158ff, 234ff
FBG, 107f, 305f
SPM, 29ff, 109f
TODC, 110ff
Chirp-managed lasers, 73, 82ff, 219
Chromatic dispersion, 11ff
CD compensation, 104ff
D parameter of single-mode fibers, 14, 86
Chromatic dispersion (continued)
dispersion map, 30ff, 45, 300ff, 313
group index, 14
limitation for uncompensated NRZ, 15f
material dispersion, 12
mechanisms, 12
monitoring, 359ff
normal, anomalous, 14f, 109
polarization-dependent CD, 20f
profile dispersion, 13
sellmeier series, 12
slope, 14, 85f, 105f
Taylor series expansion, 13f, 403
transfer function, 15
waveguide dispersion, 12f
Clock recovery, 148ff
Decider, 149f
delay-tap sampling, 372f
Diffie-Hellman key exchange, 288
Directly modulated lasers, 80ff
chirp, 80
chirp-managed lasers, 82ff
dispersion-supported transmission, 81f
Dispersion-supported transmission, 81f
DOP, 17
definition via Stokes parameters, 17
PMD measurement, 363f
DS-DBR laser diodes, 65ff
DWDM ring, 288ff
blocking, 292f
capacity, 291f
ing ring protection, 379ff
EDC, 158ff, 234ff
filter for DP-QPSK, 234ff
frequency-domain equalization
MLSE, 161f, 84, 198, 229
tap number, 160, 235f
time-domain equalization, 159
transmitter side, 158f
EDFA, 94ff
absorption and gain spectra, 95
ASE spectrum, 97ff
correction to TDFA, PDFA, 100
concatenated EDFA, 99, 187ff
forward vs. backward pumping, 189
gain equalization, 99, 119
gain flattening, 99, 119
monitoring, control, 100
saturation, 98
simplified energy band model, 96
spectral hole burning, 97
Electro-absorption modulator, 70ff
chirp, 72, 360
contrast ratio, 71
reflective EAM, 73, 261, 266ff
IS-IS routing, 334f, 343
OADM connection, 255, 289f
OSC, 100, 289f, 334ff
submarine repeater connection, 310f
topology view, 335
Decider, 149f
delay-tap sampling, 372f
Diffie-Hellman key exchange, 288
Directly modulated lasers, 80ff
chirp, 80
chirp-managed lasers, 82ff
dispersion-supported transmission, 81f
Dispersion-supported transmission, 81f
DOP, 17
definition via Stokes parameters, 17
PMD measurement, 363f
DS-DBR laser diodes, 65ff
DWDM ring, 288ff
blocking, 292f
capacity, 291f
ing ring protection, 379ff
EDC, 158ff, 234ff
filter for DP-QPSK, 234ff
frequency-domain equalization
MLSE, 161f, 84, 198, 229
tap number, 160, 235f
time-domain equalization, 159
transmitter side, 158f
EDFA, 94ff
absorption and gain spectra, 95
ASE spectrum, 97ff
correction to TDFA, PDFA, 100
concatenated EDFA, 99, 187ff
forward vs. backward pumping, 189
gain equalization, 99, 119
gain flattening, 99, 119
monitoring, control, 100
saturation, 98
simplified energy band model, 96
spectral hole burning, 97
Electro-absorption modulator, 70ff
chirp, 72, 360
contrast ratio, 71
reflective EAM, 73, 261, 266ff
IS-IS routing, 334f, 343
OADM connection, 255, 289f
OSC, 100, 289f, 334ff
submarine repeater connection, 310f
topology view, 335
INDEX

Electro-optic effect, 74f
Encryption, 287f

FBG, 118f, 107f
 as add/drop multiplexer
 as CD compensator, 107f
 as CD compensator for coherent,
 100G, 304f, 107f
 Bragg condition, 118
 channalized, 107
 group delay ripple, 107
 long period, 119
 short period, 119
 tunable FBG, 123

FCAPS management, 331f
 alarm indicator signal (AIS), 332f
 continuity check, 333
 loopback, ping, 333
 remote/backward defect identifier
 (RDI/BDI), 332f
 traceroute, 333

FEC, 150ff
 achievable gain
 cyclic codes, 153f
 Hamming distance, 152
 iterative coding, 155f
 NECG, 154
 performance in amplified vs. non-
 amplified systems, 155
 performance soft vs. hard decision
 Reed-Solomon code, 153
 soft-decision decoding, 157
 turbo decoding, 157

Fiber, 84ff
 attenuation, 8ff
 attenuation transfer function, 8
 bending loss, 9f
 chromatic dispersion, 11ff
 cross sections, 87f
 few-mode fiber, 87f
 infrared absorption, 9
 large effective area, 85f
 macro-bending loss, 9f
 micro-bending loss, 10
 monitoring, 373f
 multi-core fiber, 88f
 nonlinear effects, 25ff
 PDL, 11
 photonic bandgap fiber, 89f
 photonic-crystal fiber, 89f
 polarization-mode dispersion, 16ff
 polymer fiber, 89
 Rayleigh scattering, 8f
 Sellmeier series, 12
 single-mode fibers, 84ff
 spectral loss, 9
 thermal expansion coefficient, 283
 thermo-optic coefficient, 283f
 transmission effects, 7ff
 vintages, 24

Fiber-optic cables, 91ff
Flicker noise, 141
Four-Wave mixing, 37ff, 299
 CD compensation, 105
 penalty, 40
 phase matching, 38f
 side bands generated, 39ff
 in UDWDM-PON, 274f

Free spectral range
 AWG, 116
 DBR-VCSEL, 68
 TFF, 115
 Friis’ formula, 189, 190
 FSAN, 396f
 Fused couplers, 112f
 Gain clamping
 Raman amplifier, 101
 SOA, 103f
 GFP
 FC mapping, 277
 mapping into OTN, 351ff
 Green IT, 313, 319
 Group index, 14
 Group velocity, 14
 Hamming distance, 152
 IBTA, 400
 IEC, 399
IEEE-SA, 397f
IETF, 398f
INCITS T.11, 399
Information-transmission velocity, 14
Interleaver, 112, 119f
Intradyne detection, 231f
 carrier phase estimation, 237f
 CD compensation, 235
 constant modulus algorithm, 236f
digital filter, 234f
 frequency offset estimation, 238f
 laser linewidth, 239
 nonlinear compensation, 239f
 system overview, 233, 243
 ITU-T recommendations, 395f

Kerr effect (electro-optic, DC), 75
Kerr effect (optical, AC)
 nonlinear coefficient, 25ff, 75
 nonlinear Schrödinger equation, 27

LAN WDM, 145
Laser diodes, 55ff
 automatic current control, 60f
 automatic power control, 61
 chirp, 59
 confinement, 56f
 DFB, DBR laser diodes, 63f
double-heterostructure, 56f
 extinction ratio, 59f
Fabry-Perot laser diodes, 62f
 quantum efficiency, 58f
 single-, multi-longitudinal mode, 62
temperature drift, 60, 67
tunable laser diodes, 64ff
VCSEL diodes, 64, 68
wavelengths covered, 58
Laser Safety Class, 1M, 274
Latency
 allowance in disk mirroring, 277ff
differential latency (in GDPS), 282
low-latency WDM, 286f
WDM sub-systems, 280
Limiting amplifier, 142f
 block diagram, 143
 interleaved feedback, 142
 transfer function, 142
Linear crosstalk, 177ff
crosstalk attack, 180
inter-channel, 178f
interferometric, 180ff
Liquid crystal
 spatial light modulator, 111
 switch, 127f
tunable filter, 120ff
LMS algorithm, 160, 235
Long-haul systems, 294ff
 CD management, 301, 29ff, 104ff, 297ff
 DCF vs. FBG, 107f, 303ff
design work flow, 302f
engineering models, 295ff
FWM, 299
GVD and SPM, 297f
link-based design, 300ff
mixed, 10G/100G design, 303ff
optical power management, 300f
OSNR degradation, 296
regional differences, 306f
ripple and tilt, 296f
SPM: RZ vs. NRZ, 109f
SRS, 299
system limit, 303f
XPM, 298f
Loop mirror
 Hi-bi loop mirror, 367f
 NOLM, 368f

Mach-Zehnder modulator, 75ff
 modulator response, 76f
 structure, 75
 transfer function, 76
Macro-bending loss, 9f
 low bending-loss fibers, 86
 principle, 9f
Management, 327ff
 DCN connections, 328, 100, 255, 289, 310, 336
domains, 328f
FCAPS, 331ff
layers, 330
MTOSI, 338f
planes, 328
SNMP, 337f
TL-1, 339
TMN, 329ff
MEMS
2D, 3D switches, 125ff
tunable filters, 124f
tunable MEM-VCSEL, 68
Metro networks
converged metro network, 314f
delayering, 314
metro WDM rings, 254f, 288ff
MLSE, 161f
Modulation, 197ff
ASK, 197f, 207ff
BPSK, 215ff
detection options, 198f
DPolSK, 230f
DP-QPSK, 233ff
DPSK, 216f
DQPSK, 218f
FSK, 229f
ODB, 224ff
O-OFDM
OOK, 207ff
overview, 198f
PolSK, 230f
QAM, 220ff, 231ff
QPR, 228f
spectra, 203
Modulation instability, 43
Modulators, 70ff
EAM, 71ff
electro-optic modulators, 74ff
external modulators, 71ff
MZM, 75ff
REAM, 73, 266ff
RSOA, 77ff, 266ff
Monitoring, 356ff
BER monitoring, 371f
CD monitoring, 359ff
delay-tap sampling, 372f
fiber monitoring, 373f
impairments overview, 357
optical performance monitoring, 371ff
OSNR monitoring, 364ff
PMD monitoring, 362ff
Q-factor monitoring, 372f
requirements, 358f
signal-quality measures, 356f
transients monitoring, 369f
MZI, 119f
as interleaver, 119f
transfer function, 120
NECG, 154f
Noise, 181ff
cascaded amplifiers, 187ff
flicker noise, 141
in optical receivers, 182ff
Raman amplifiers, 192f
shot noise, 183f
thermal noise, 140f, 182f
TIA, 140f
with pre-amplifier, 184f
Noise figure
amplifier cascade, 190f
definition, 188
dual-stage amplifier, 189f
EDFA with Raman pre-amplifier, 192
optical amplifier, 188f
Raman amplifier, 193
Nonlinear compensation, 239f
Nonlinear effects, 25ff
Kerr effects, 25ff
stimulated Brillouin scattering, 49f
stimulated Raman scattering, 46ff
Nonlinear phase noise, 43f
Nonlinear Schrödinger equation, 27f
coupled NLSE, 28
generalized NLSE, 29
for multiplexed signals, 28
soliton solution, 30
OIF, 397
OpEx drivers, 313
Optical amplifiers, 93ff
 EDFA, 94ff
 EDFA and other rare-earth-doped amplifiers, 94ff
noise in optical amplifiers, 184ff
parameter comparison, 100, 104
population-inversion factor, 185
Raman amplifier, 100f, 192f
SOAs, 101ff
submarine system, 311
wavelengths covered, 95
Optical pre-amplifier
noise figure, 184f
OSNR, 188f
sensitivity, 186f
Optical switches, 125ff
acousto-optic, 129
bubbles, 127
LCoS, 128
LCT, 127f
MEMS, 125f
parameter comparison, 129
thermo-optic, 129
Orthogonality
definition, 1f
DQPSK receiver, 219
DQPSK transmitter, 219
in OFDM, 241
in-band OSNR monitoring, 366f
monitoring methods, 358
polarization modes, 16, 366f
OSC
 as part of DCN, 289f, 334ff
 EDFA connection, 100
insertion loss, 336
wavelength, 337
OSNR
 amplifier cascade, 191
definition, 188
in-band, out-band, 364f
polarization-nulling measurement, 366f
pre-amplifier, 190f
OTDR
 coherent OTDR, 311f
in submarine systems, 310f
in terrestrial systems, 283f, 373f
in WDM-PON, 265, 374
resolution, 283f
OTN, 349ff
 AIS, RDI, 332f
 GFP mapping, 351ff, 277
 interfaces, 350f
Jitter specifications, 350
layers, 350
mapping and multiplexing, 351ff
mapping efficiencies, 354
OAM, 354f
protection, 355f
sections, 350f
TCM, 354f
OXC, 129ff
Clos structure, 135
implementations, 130f, 134
layered OXC, 134
Partial response signalling, 224ff
 ODB, 224ff
 ODB with EAMs, 73
 QPR, 228f, 237
with chirp-managed lasers, 83f
Path availability
 protected GDPS, 286, 379
 protected WDM rings, 385
 WDM-PON, 387
Periodic group delay compensator, 107f
Phase velocity, 13
Photo diodes, 135ff
 APD, 137ff
 parameter comparison, 139
 PIN photo diodes, 135ff
 signal/noise ratio, 183f
 spectral responsivity, 137
Pilot tones
 CD monitoring, 359ff
 LD tuning in WDM-PON, 263ff
 PMD monitoring, 362f
PIN photo diode, 135ff
 equivalent circuit, 137
 noise, 182ff
responsivity, 136f
structure, energy model, 136
PLC-WGR, 110f
Pluggable transceivers, 143ff
CFP, 145f
SFP, 144
XFP, 144f
Pockels effect, 75
Polarization interleaving, 230f
Polarization scrambling, 200, 272f
Polarization-mode dispersion, 16ff
average DGD, 19
degree of polarization, 17
dependence on fiber installation, 24
dependence on fiber vintage, 25
fiber audits, 23ff
limitation for uncompensated NRZ, 22
monitoring, 362ff
outage probability, 21f
penalties, 19f
PMD parameter, 18
PMD in recirculating loops, 23
second-order PMD, 20f
states of polarization, 16f
Stokes parameters, 16f
transfer function, 20
PON, 257ff
FSAN standardization, 396f
for FTTX access, 257
general structure, 258
WDM-PON, 259ff
Power consumption
ADC, DAC, 319
contributors, 313, 319
effect of network consolidation, 313f
fraction of WDM in a network, 315f
HVAC contribution, 317
per ICT sector, 316
reduction of, 319f, 376
WDM long-haul system, 317
WDM-PON, 262, 320f
WDM system examples, 318
WDM TEEER requirements, 318f
PRBS signals, 402f, 146f
Protection, 377ff
dedicated, shared, 377
group-switched ring, 382f
OCh-DPRing, O-BPSR, 379f
OCh-SPRing, O-BPSR, 381ff
OMS-SPRing, 382f
OTN options, 355f
path availability, 286, 379, 385, 387
point-to-point links, 378f, 286
protection vs. restoration, 377
ring protection, 379ff
WDM protection classification, 377f, 379
Pulse carver, 203, 206, 219, 227
Pulse shaping, 202ff
effect on bandwidth, 203
pulse carver, 203, 206, 219, 227
RZ duty cycle, 202f
RZ vs. NRZ, 202
Q-factor
conversion between BER and Q, 401f
definition, 209, 210
dependence on OSNR for pre-amplifier, 186f
detailed derivation for OOK, 209ff
monitoring, 372f
Q-function
collection of modulation and
detection schemes, 245
definition, 206f
Quantum dots
laser diodes, 65
SOA, 104
Recirculating loop, 23
Restoration, 387f, 377
ROADM, 129ff
applications, 375f, 382f, 387f
cascaded ROADMs, 132f
colorless, directionless, 131f
contentionless, 131f
directionless, 131f
gridless, 128
ROADM (continued)
iPLC-based ROADM, 130
iPLC module, 128
multi-degree WSS, 130f, 126
restoration, 387f
ring protection, 382f
structures, 130f
RSOA, 77ff, 266ff

Self-phase modulation, 29ff
CD compensation, 30ff, 109f, 297f
effect of duty cycle, 110
Sensitivity, 186f
optical pre-amplifier, 187
PIN, APD, 186
SERDES, 146ff
de-serializer, 148
serializer, 147
slicer, 149f
in XENPAK, 145
Slicing, 149f
SOA, 77ff, 101ff
gain compression, 102f
gain-clamped SOA, 103f
OSNR monitoring, 269f
polarization dependence, 102
quantum dots, 104
reflective SOA, 77ff
TWSLA, 101f
Solitons, 30ff
CD compensation, 109f
dispersion-managed Solitons, 30ff
Gaussian approximation, 31
soliton solution, 30
Span length
histograms, 307
regional differences, 306f
Stimulated Brillouin scattering, 49f
Stimulated Raman scattering, 46ff
amplification by, 47f
amplifier, 100f, 192f
coupled propagation equations, 47
ergy band model, 47
equivalent noise figure, 192
gain spectrum, 47
gain tilt, 48, 296, 299
on/off gain, 192f
shock term (NLSE), 28
stokes, anti-Stokes, 46f
WDM channel tilt, 48, 296, 299
Submarine cable, 93
Submarine systems, 309ff
System block diagram
coherent UDWDM-PON, 272
CSRZ-ODB, 227
direct detection, 200
direct-I/Q-modulated OFDM, 243
duobinary-PolSK, 230
heterodyne asynchronous detection, 200
heterodyne synchronous detection, 201
homodyne BPSK, 216
hybrid WDM/TDMA-PON, 270
NRZ-DP-QPSK (intradyne), 233
NRZ-DPSK (direct detection), 216
NRZ-ODB, 4×28G, 227
NRZ-ODB transmitter, 225
NRZ-OOK, IM-DD, 208
polarization-interleaved ODB, 231
RZ-DQPSK (direct detection), 219
WDM-PON monitoring, 374
WR-WDM-PON (seeded), 266, 267, 269, 270
WR-WDM-PON (tunable lasers), 261, 263, 266
WR-WDM-PON (wavelength reuse), 268
WS-WDM-PON (tunable lasers), 260
Tandem connection monitoring, 355
TAT-14, 312f
Thin-film filter, 114f
FSR, 115
transfer function, 114
TIA, 139ff
equivalent noise current, 142
FET example, 142
noise sources, 141
peaking, 140, 142
transimpedance, 140

Time-Resolved Optical Gating, 365f
Transient monitoring, 369f

Tunable filters, 120ff
FBG, 123
FP interferometer, 121f
liquid crystal, 122f
MEM-tunable filter, 124f
parameter comparison, 126
volume holographic grating, 123f

Tunable laser diodes, 64ff
based on DFB arrays, 69
ECL diodes, 69
FBG-ECL, 69
MEM-VCSEL diodes, 68f
multi-section DBR laser diodes, 66f
parameter comparison, 70

TWSLA, 101f

UDWDM-PON, 271ff
FWM penalty, 274
heterodyne implementation, 271f
homodyne implementation with
polarization scrambler, 272f
parameter comparison, 273
pre-filtered, 271

Velocities
 group velocity, 14
 information-transmission velocity, 14
 phase velocity, 13
 retarded time, 34

Virtually-imaged phased-array, 111
Viterbi algorithm, 161f
Viterbi & viterbi, 237

Wavelength locker
 avoidance for PON transmitters, 262
 shared, 263f

Wavelet transform, 370

WDM
 access network, 253ff
 amplifiers, 93ff
 corporate networks, 277ff
 CWDM backhaul, 255f
 DCN, 334ff
directional differential delay, 282ff
electronic amplifiers, 139ff
encryption per channel, 287f
energy efficiency, 315ff
experiment, total capacity, 4
filters, 111ff
flexible network, 375ff
history, 2f
in disk mirroring, 279f
in server consolidation, 281f
LAN WDM, 145
long-haul design, 294ff
low-latency transport, 286f
management systems, 327ff
metro network example, 254, 315
metro WDM, 288ff
monitoring, 356ff
optical switches, 125ff
OSC, 334ff
OXC, ROADM, 129ff
passive WDM, 256
power consumption, 315ff
protection, 377ff
receivers, 135ff
regional networks, 288ff
restoratopn, 387f
standardization bodies, 395ff
transmission impairments overview, 357
transmission line, 84ff
transmission system, 56, 197ff,
transmitters, 55ff
wavelength conversion, 105, 388f
wavelength switching devices, 125ff
WDM overlay to PON, 121

WDM filters, 111ff
AWG, 115ff
FBG, 118f
fused wavelength-selective couplers,
113f
interleaver, 119f
TFF, 114f
tunable filters, 120ff
INDEX

WDM-PON, 259ff
 with active remote node, 270
 coherent UDWDM-PON, 271ff
 deployment reference, 276
hybrid WDM/TDMA-PON,
 launch power, 275
 network consolidation, 314f
OTDR monitoring, 374
power consumption, 320f
power levels, 275
protection, 386f
Rayleigh backscattering, 268ff
reach, 273ff
 with remote seed source, 270
RSOA reflections, 78f
 with seeded/reflective transmitters, 266ff
 with tunable LDs, 261ff
 using multiple bands, 265f
 with wavelength re-use, 267f
WR-WDM-PON, 261ff
WS-WDM-PON, 260f
XPolM, 36f