Contents

Forward xiii
Preface xv

1. Images of Cancer 1
 How Cancer is Viewed 2
 References 13

2. Confusion Surrounds the Origin of Cancer 15
 The Oncogenic Paradox 18
 Hallmarks of Cancer 18
 Reassessment 26
 References 27

3. Cancer Models 31
 Problems with Some Cancer Models 31
 Animal Charges as a Major Impediment to Cancer Research 38
 Problems with Tumor Histological Classification 39
 Personal Perspective on Cancer 44
 References 45

4. Energetics of Normal Cells and Cancer Cells 47
 Metabolic Homeostasis 47
 The Constancy of the ΔG_{ATP} 54
 ATP Production in Normal Cells and Tumor Cells 55
 Energy Production Through Glucose Fermentation 57
 Glutaminolysis with or without Lactate Production 61
 Transamination Reactions 64
 TCA Cycle, Substrate-Level Phosphorylation 66
 Cholesterol Synthesis and Hypoxia 67
 Summary 67
 References 68
5. Respiratory Dysfunction in Cancer Cells

Normal Mitochondria 74
Morphological Defects in Tumor Cell Mitochondria 77
Proteomic Abnormalities in Tumor Cell Mitochondria 79
Lipidomic Abnormalities in Tumor Cell Mitochondria 81
Cardiolipin: A Mitochondrial-Specific Lipid 83
Cardiolipin and Abnormal Energy Metabolism in Tumor Cells 85
Complicating Influence of the In Vitro Growth Environment on Cardiolipin
Composition and Energy Metabolism 92
Mitochondrial Uncoupling and Cancer 97
Cancer Cell Heat Production and Uncoupled Mitochondria 98
Personal Perspective 99
Summary 100
References 101

6. The Warburg Dispute

Sidney Weinhouse’s Criticisms of the Warburg Theory 108
Alan Aisenberg’s Criticisms of the Warburg Theory 110
Sidney Colowick’s Assessment of the Aisenberg Monograph 113
Apples and Oranges 114
References 116

7. Is Respiration Normal in Cancer Cells?

Pseudo-Respiration 119
How Strong is the Scientific Evidence Showing that Tumor Cells can
Produce Energy Through OxPhos? 124
OxPhos Origin of ATP in Cancer Cells Reevaluated 124
What About OxPhos Expression in Other Tumors? 127
The Pedersen Review on Tumor Mitochondria and the Bioenergetics of
Cancer Cells 128
References 129

8. Is Mitochondrial Glutamine Fermentation a Missing Link in the
Metabolic Theory of Cancer?

Amino Acid Fermentation can Maintain Cellular Energy Homeostasis During
Anoxia 133
Evidence Suggesting that Metastatic Mouse Cells Derive Energy from
Glutamine Fermentation 134
Fermentation Energy Pathways can Drive Cancer Cell Viability Under
Hypoxia 138
Competing Explanations for the Metabolic Origin of Cancer 141
Chapter Summary 143
References 143
Contents

9. Genes, Respiration, Viruses, and Cancer 145

- Does Cancer have a Genetic Origin? 145
- Respiratory Insufficiency as the Origin of Cancer 150
- Germline Mutations, Damaged Respiration, and Cancer 154
- Somatic Mutations and Cancer 158
- Revisiting the Oncogene Theory 160
- Mitochondrial Mutations and the Absence or Presence of Cancer 163
- Viral Infection, Damaged Respiration, and the Origin of Cancer 165
- Summary 168
- References 168

10. Respiratory Insufficiency, the Retrograde Response, and the Origin of Cancer 177

- The Retrograde (RTG) Response: An Epigenetic System Responsible for Nuclear Genomic Stability 177
- Inflammation Injures Cellular Respiration 181
- Hypoxia-Inducible Factor (HIF) Stability is Required for the Origin of Cancer 182
- Mitochondria and the Mutator Phenotype 183
- Calcium Homeostasis, Aneuploidy, and Mitochondrial Dysfunction 186
- Mitochondrial Dysfunction and Loss of Heterozygosity (LOH) 187
- Tissue Inflammation, Damaged Respiration, and Cancer 188
- References 189

11. Mitochondria: The Ultimate Tumor Suppressor 195

- Mitochondrial Suppression of Tumorigenicity 195
- Normal Mitochondria Suppress Tumorigenesis in Cybrids 196
- Evidence from rho⁰ Cells 198
- Normal Mitochondria Suppress Tumorigenesis In Vivo 199
- Normal Mouse Cytoplasm Suppresses Tumorigenic Phenotypes 200
- Enhanced Differentiation and Suppressed Tumorigenicity in the Liver Microenvironment 202
- Summary of Nuclear-Cytoplasmic Transfer Experiments 203
- References 204

12. Abnormalities in Growth Control, Telomerase Activity, Apoptosis, and Angiogenesis Linked to Mitochondrial Dysfunction 207

- Growth Signaling Abnormalities and Limitless Replicative Potential 208
- Linking Telomerase Activity to Cellular Energy and Cancer 209
- Evasion of Programmed Cell Death (Apoptosis) 209
- Sustained Vascularity (Angiogenesis) 210
- References 211
13. Metastasis 215

Metastasis Overview 215
Cellular Origin of Metastasis 217
Macrophages and Metastasis 221
Carcinoma of Unknown Primary Origin 232
Many Metastatic Cancers Express Multiple Macrophage Properties 233
Linking Metastasis to Mitochondrial Dysfunction 233
Revisiting the "Seed and Soil" Hypothesis of Metastasis 235
Revisiting the Mesenchymal Epithelial Transition (MET) 236
Genetic Heterogeneity in Cancer Metastases 237
Transmissible Metastatic Cancers 240
The Absence of Metastases in Crown-Gall Plant Tumors 240
Chapter Summary 241
References 241

14. Mitochondrial Respiratory Dysfunction and the Extrachromosomal Origin of Cancer 253

Connecting the Links 254
Addressing the Oncogenic Paradox 255
Is Cancer Many Diseases or a Singular Disease of Energy Metabolism? 258
References 258

15. Nothing in Cancer Biology Makes Sense Except in the Light of Evolution 261

Revisiting Growth Advantage of Tumor Cells, Mutations, and Evolution 262
Tumor Cell Fitness in Light of the Evolutionary Theory of Rick Potts 269
Cancer Development and Lamarckian Inheritance 271
Can Teleology Explain Cancer? 272
References 272

16. Cancer Treatment Strategies 277

Current Status of Cancer Treatment 277
The “Standard of Care” for Glioblastoma Management 280
References 285

17. Metabolic Management of Cancer 291

Is it Dietary Content or Dietary Composition that Primarily Reduces Tumor Growth? 292
Dietary Energy Reduction and Therapeutic Fasting in Rodents and Humans 294
Contents

Cancer as a Genetic Disease 367
Mechanism of Action? 368
Cachexia 368
Summary 369
References 370

19. Cancer Prevention 375

Cell Phones and Cancer 376
Alzheimer’s Disease and Cancer Risk 377
Ketone Metabolism Reduces Cancer Risk 378
Mitochondrial Enhancement Therapy 379
Therapeutic Fasting and Cancer Prevention 379
Autophagy and Autolytic Cannibalism: A Thermodynamic Approach to Cancer Prevention 381
Cancer Prevention by Following Restricted Ketogenic Diet 382
References 384

20. Case Studies and Personal Experiences in Using the Ketogenic Diet for Cancer Management 387

Effects of a Ketogenic Diet on Tumor Metabolism and Nutritional Status in Pediatric Oncology Patients: Comments from Dr. Linda Nebeling 387
Raffi’s Story: Comments from Miriam Kalamian 389
Biological Plausibility that Cancer is a Metabolic Disease Dependent for Growth on Glucose and Glutamine: Comments from Dr. Bomar Herrin 395
Using the Restricted Ketogenic Diet for Brain Cancer Management: Comments from Neuro-Oncologist, Dr. Kraig Moore 397
The Ketogenic Diet for Brain Cancer Management: Comments from Beth Zupec-Kania 400
Summary 402
References 403

21. Conclusions 405

Major Conclusions 407
References 408

Index 409