Contents

Preface to the German Edition XV
Preface to the English Edition XIX
Dedication XXI
Foreword XXIII

1 Introduction 1
1.1 Analytical Chemistry – The History 1
1.2 Analytical Chemistry and Its Role in Today’s Society 2

2 Introduction to Quality Management 5
2.1 Historical Background 5
2.2 Variability 6
2.3 The Four Pillars of Wisdom (from Shewhart to Deming) 10
2.4 Zero-Defect Tolerance 10
2.5 Why Standards? 11
2.6 The Controlled Process 11
2.7 ISO Guidelines 9004 12
2.8 Quality Management System (QMS) Requirements 15

3 Fundamentals of Statistics 17
3.1 Basic Concepts 17
3.1.1 Population and Sample 19
3.1.2 Distribution of Values 20
3.2 Important Terms 22
3.2.1 Mean, Arithmetic Mean, Average (\(\bar{x} \)) 22
3.2.2 Standard Deviation (\(\sigma, s \)) 22
3.2.3 Variance (\(\text{Var, } V \)) 23
3.2.4 Standard Deviation of Mean Values (\(\bar{s} \)) 24
3.2.5 Relative Standard Deviation (RSD) and Coefficient of Variation (CV) 24
3.2.6 Confidence Interval (CI), Confidence Limits 25
3.3 Quality of Results (Accuracy and Precision) 25
3.3.1 Measurement Deviations 28
3.3.2 Random Deviations—Influence on Precision 30
 3.3.2.1 Precision 30
 3.3.2.2 Determination of Random Deviations 30
 3.3.2.3 Causes of Random Deviations 31
3.3.3 Systematic Deviations—Influence on Accuracy 31
 3.3.3.1 Accuracy/Trueness 31
 3.3.3.2 Bias 31
 3.3.3.3 Causes of Systematic Deviations 32
 3.3.3.4 Effects on the Measurement 32
 3.3.3.5 Determination of Systematic Deviations 32
 3.3.3.6 Recovery Experiments 33
3.3.4 Gross Errors 33
 3.3.4.1 Causes of Gross Errors 34
3.3.5 Uncertainty of Measurement Results 34
 3.3.5.1 Standard Uncertainty of Single Measurements 34
 3.3.5.2 Combined Uncertainty 35
 3.3.5.3 Procedure for Determining the Combined Uncertainty 35
 3.3.5.4 Rules for Uncertainty Propagation 37
 3.3.5.5 Extended Uncertainty 38
3.3.6 Non-statistical Methods of Estimation 38
 3.3.6.1 Tolerance 38
3.3.7 Expressing Analytical Results 39
 3.3.7.1 Expressing the Measurement Uncertainty in the Value of a Quantity 39
 3.3.7.2 Accordance with the National Institute of Standards and Technology, U.S. Department of Commerce (NIST) 39
3.3.8 Significant Figures—“Box-and-Dot” Method 40
3.3.9 Outlier Tests 42
 3.3.9.1 The 2.5s Barrier 42
3.4 Regression 43
 3.4.1 Regression Analysis 43
 3.4.2 Calibration Function 43
 3.4.3 The “Optimal” Trend Line 44
 3.4.4 Linear Regression 45
 3.4.4.1 Linearity 45
 3.4.4.2 Statistical Information from Linear Regression 46
 3.4.4.3 Analytical Sensitivity 46
 3.4.4.4 Correlation Coefficient (R) 46
 3.4.4.5 Coefficient of Determination (R^2) 47
 3.4.4.6 Regression Equation 47

4 The Analytical Process 53
 4.1 The Analytical Process in the Overall Context 53
 4.2 Planning Phase 55
4.2.1 Analytical Problem 55
4.2.2 Object of Investigation 56
4.2.3 Sample 56
4.2.4 Sampling 57
4.2.4.1 Types of Sampling 58
4.2.4.2 Sampling Errors 59
4.2.4.3 Sample Handling 60
4.2.4.4 Difficulties of Sample Processing 60
4.2.5 Examination Procedures 61
4.2.6 Analyte 62
4.2.7 Literature and Database Research 62
4.2.7.1 Types of Chemical Literature 63
4.2.7.2 From the Question to the Document 63
4.2.7.3 From the Quotation to the Document 63
4.2.7.4 The Question of Topic 65
4.2.7.5 Science Citation Index Expanded 66
4.2.7.6 Scopus 66
4.2.7.7 Medline 66
4.2.7.8 Current Information 67
4.2.7.9 Specific Types of Documents Such As Norms and Patents 67
4.3 Analysis 67
4.3.1 Measurement 67
4.3.2 Method Optimization 68
4.3.3 Calibration 69
4.3.3.1 External Calibration 70
4.3.3.2 Internal Standard (IStd) 71
4.3.3.3 Standard Addition Method (Spiking Method) 71
4.3.3.4 One-Time Addition 71
4.3.3.5 Multiple Additions 72
4.3.3.6 Recovery Standard (RStd) 73
4.4 Assessment 74
4.4.1 Quantification 74
4.4.1.1 Traceability 74
4.4.2 (“True”) Content 74
4.4.2.1 Terminology 75
4.5 Validation 75
4.5.1 Validation Elements 77
4.5.1.1 Selectivity/Specificity 77
4.5.1.2 Working Range 78
4.5.1.3 Detection, Determination and Quantitation Limit 78
4.5.1.4 German Standard DIN 32645 78
4.5.1.5 Calculations 81
4.5.1.6 Limit of Detection according to Kaiser 84
4.5.1.7 Robustness 86
4.5.2 Using the Computer 86
8.1.2 Gas Chromatography Coupled with Mass Selective Detection—GC/MS, Project: “Circumvention of the Formerly Mandatory Declaration of Fragrances in Perfumes?” 139
8.1.2.1 Analytical Problem 139
8.1.2.2 Introduction 141
8.1.2.3 Material and Methods 155
8.1.2.4 Questions 158
References 159
8.1.3 High-Performance Liquid Chromatography—HPLC, Project: “Stricter Control of Drugs” 159
8.1.3.1 Analytical Problem 159
8.1.3.2 Introduction 161
8.1.3.3 Material and Methods 170
8.1.3.4 Questions 173
References 173
8.1.4 High-Performance Liquid Chromatography Coupled with Mass-Selective Detection—LC/MS, Project “Cocaine Scandal: Hair Sample with Consequences” 173
8.1.4.1 Analytical Problem 173
8.1.4.2 Introduction 175
8.1.4.3 Material and Methods 189
8.1.4.4 Questions 193
References 194
8.1.5 Ion Chromatography (IC), Project: “Water Is Life” 194
8.1.5.1 Analytical Problem 194
8.1.5.2 Introduction 196
8.1.5.3 Material and Methods 215
8.1.5.4 Questions 220
References 220
8.1.6 High-Performance Thin-Layer Chromatography (HPTLC), Project: “Ensuring Regulatory Compliance by Quantification of Lead Compounds (Markers) in Herbal Combination Products” 221
8.1.6.1 Analytical Problem 221
8.1.6.2 Introduction 223
8.1.6.3 Material and Methods 232
8.1.6.4 Questions 236
References 236
8.2 Spectroscopy 236
8.2.1 UV–VIS Spectroscopy, Project: “Evaluation of Potential Saving through Use of Optimized Alloys” 236
8.2.1.1 Analytical Problem 236
8.2.1.2 Introduction 238
8.2.1.3 Bandwidth 242
8.2.1.4 Material and Methods 243
8.2.1.5 Questions 246
References 247

8.2.2 Fourier-Transform Infrared Spectroscopy (FTIR), Project: “Benchmarking with a New Competitive Japanese Product” 247
8.2.2.1 Analytical Problem 247
8.2.2.2 Introduction 249
8.2.2.3 Material and Methods 259
8.2.2.4 Questions 263
References 264

8.2.3 Near-Infrared (NIR) Spectrometry, Project: “Accelerated Raw Material Intake Control” 264
8.2.3.1 Analytical Problem 264
8.2.3.2 Introduction 266
8.2.3.3 Material and Methods 282
8.2.3.4 Questions 286
Reference 286

8.2.4 Atomic Absorption Spectroscopy (AAS), Project: “Recycling of Sewage Sludge in Agriculture” 286
8.2.4.1 Analytical Problem 286
8.2.4.2 Introduction 288
8.2.4.3 Material and Methods 296
8.2.4.4 Questions 299
References 299

8.3 Electrophoretic Separation Methods 299
8.3.1 Capillary Electrophoresis, Project: “Preservatives in Cosmetics: Friend or Foe” 299
8.3.1.1 Analytical Problem 299
8.3.1.2 Introduction 301
8.3.1.3 Material and Methods 313
8.3.1.4 Questions 316
References 316

8.4 Automation 316
8.4.1 Flow Injection Analysis (FIA), Project: “Phenol-like Flavor in Beer: a Quality Parameter to be Mastered” 316
8.4.1.1 Analytical Problem 316
8.4.1.2 Introduction 319
8.4.1.3 Material and Methods 324
8.4.1.4 Questions 327
References 328

8.5 Mass Analytical Determination Methods 328
8.5.1 Karl Fischer Water Determination, Project: “Water Content as a Quality Parameter” 328
8.5.1.1 Analytical Problem 328
8.5.1.2 Introduction 330
8.5.1.3 Material and Methods 344
8.5.1.4 Questions 347
References 347
8.6 General Analytical Methods 348
8.6.1 Nitrogen and Protein Determination according to Kjeldahl, Project: “Official Control at the Swiss Alps Dairy Ltd” 348
8.6.1.1 Analytical Problem 348
8.6.1.2 Introduction 350
8.6.1.3 Material and Methods 355
8.6.1.4 Questions 359
References 359
8.6.2 Determination of Dissolved Oxygen (DO), Project: “Monitoring the Efficiency of the Biological Stage in a Sewage Treatment Plant” 359
8.6.2.1 Analytical Problem 359
8.6.2.2 Introduction 361
8.6.2.3 Material and Methods 366
8.6.2.4 Questions 369
References 369
8.7 Universal Separation Methods 370
8.7.1 Field Flow Fractionation (FFF), Project: “Characterization of Nanoparticles” 370
8.7.1.1 Analytical Problem 370
8.7.1.2 Introduction 372
8.7.1.3 Material and Methods 384
8.7.1.4 Questions 387
References 387

Appendix A Selection of Recommended Sources by Subject Area 389
A.1 General Sources 389
A.1.1 Römpp 389
A.1.2 Wikipedia 389
A.1.3 CRC Handbook of Chemistry and Physics, David R. Lide (Ed.) 389
A.1.4 Merck Index: Encyclopedia of Chemicals, Drugs and Biologicals 390
A.1.5 ChemSpider 390
A.2 Analytical Chemistry 390
A.2.2 Official Methods of Analysis, Association of the Official Analytical Chemists (1990) 390
A.3 Inorganic and Organometallic Chemistry 390
A.3.1 Gmelin Handbook of Inorganic Chemistry 390
A.3.2 Dictionary of Inorganic (Metals and Organic) Compounds 391
A.4 Chemical Engineering/Technical Chemistry/Process Engineering 391
A.4.1 Ullmann’s Encyclopedia of Industrial Chemistry 391
A.4.2 Kirk-Othmer Encyclopedia of Chemical Technology 391
A.5 Chemicals: Directory of Suppliers 391
A.5.1 Databases Subject to Charge 391
A.5.2 Free Access (Selection) 391
A.6 Organic Chemistry 392
A.6.1 Science of Synthesis (“Houben-Weyl Methods of Molecular Transformations, Methods of Organic Chemistry”) 392
A.7 Physico-chemical Data 392
A.7.1 CRC Handbook of Chemistry and Physics 392
A.7.2 Landolt-Bornstein Numerical Data and Functional Relationships in Science and Technology 392
A.7.3 TRC Thermodynamic Tables 393
A.8 Polymers and Materials 393
A.8.1 DECHEMA Materials Table 393
A.8.2 Polymer Handbook 393
A.9 Spectra 393
A.9.1 Printed Data Collections 393
A.9.2 Online Products Requiring a License 394
A.9.3 Free Access Online Products 394
A.10 Toxicology and Safety 394

Appendix B Statistical Tables 395

Appendix C Obligatory Declaration for Students 399

Appendix D The International System of Units (SI)—and the “New SI” 401

Appendix E Evaluation Guide for Formal Reports 413

Appendix F Safety in the Analytical Laboratory 415
F.1 General Precautionary Measures 415
F.1.1 Measures for Personal Protection 415
F.1.2 Eye Protection 415
F.1.3 Skin Protection 416
F.1.4 Protective Clothing 416
F.1.5 Hearing Protection 416
F.1.6 Respiratory Protection 416
F.2 First Aid 417
F.2.1 Rescue 417
F.2.2 Alerting Emergency Personnel 418
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>F.2.3</td>
<td>Treatment of Unconscious Victim</td>
<td>418</td>
</tr>
<tr>
<td>F.2.4</td>
<td>Bleeding Wounds</td>
<td>418</td>
</tr>
<tr>
<td>F.2.5</td>
<td>Shock</td>
<td>419</td>
</tr>
<tr>
<td>F.2.6</td>
<td>Eye Injuries</td>
<td>419</td>
</tr>
<tr>
<td>F.2.7</td>
<td>Burns</td>
<td>420</td>
</tr>
<tr>
<td>F.2.8</td>
<td>Caustic Burns</td>
<td>420</td>
</tr>
<tr>
<td>F.2.9</td>
<td>Poisoning</td>
<td>420</td>
</tr>
<tr>
<td>F.3</td>
<td>Working with Chemicals</td>
<td>421</td>
</tr>
<tr>
<td>F.3.1</td>
<td>Chemicals</td>
<td>421</td>
</tr>
<tr>
<td>F.3.2</td>
<td>Solvents</td>
<td>422</td>
</tr>
<tr>
<td>F.3.3</td>
<td>Handling of Glass and Glass Equipment</td>
<td>423</td>
</tr>
<tr>
<td>F.3.4</td>
<td>Electrical Apparatus, Heating Sources</td>
<td>423</td>
</tr>
<tr>
<td>F.3.5</td>
<td>Fire Prevention</td>
<td>424</td>
</tr>
<tr>
<td>F.3.6</td>
<td>Sources</td>
<td>424</td>
</tr>
<tr>
<td>F.3.7</td>
<td>Fume Hood</td>
<td>424</td>
</tr>
<tr>
<td>F.4</td>
<td>Chemical Reactions under Increased Pressure</td>
<td>424</td>
</tr>
<tr>
<td>F.4.1</td>
<td>Chemicals</td>
<td>425</td>
</tr>
<tr>
<td>F.4.2</td>
<td>Apparatus</td>
<td>425</td>
</tr>
<tr>
<td>F.4.3</td>
<td>Working in Clean Rooms</td>
<td>425</td>
</tr>
<tr>
<td>F.4.3.1</td>
<td>General Conduct</td>
<td>426</td>
</tr>
<tr>
<td>F.4.3.2</td>
<td>Handling of Chemicals</td>
<td>426</td>
</tr>
<tr>
<td>F.4.3.3</td>
<td>Devices</td>
<td>426</td>
</tr>
<tr>
<td>F.5</td>
<td>Disposal of Chemicals</td>
<td>427</td>
</tr>
<tr>
<td>F.5.1</td>
<td>Organic Chemicals</td>
<td>427</td>
</tr>
<tr>
<td>F.5.2</td>
<td>Inorganic Chemicals</td>
<td>428</td>
</tr>
<tr>
<td>F.6</td>
<td>Gases</td>
<td>430</td>
</tr>
<tr>
<td>F.6.1</td>
<td>Compressed Gas Bottles with Small Leak</td>
<td>430</td>
</tr>
<tr>
<td>F.6.2</td>
<td>Compressed Gas Bottle with Large Leak</td>
<td>430</td>
</tr>
<tr>
<td>F.6.3</td>
<td>Explosive, Flammable or Oxidizing Materials That Develop Flammable Gas When Combined with Water</td>
<td>430</td>
</tr>
<tr>
<td>F.7</td>
<td>Liquids</td>
<td>431</td>
</tr>
<tr>
<td>F.7.1</td>
<td>Aqueous</td>
<td>431</td>
</tr>
<tr>
<td>F.7.2</td>
<td>Organic</td>
<td>431</td>
</tr>
<tr>
<td>F.7.3</td>
<td>Mercury</td>
<td>431</td>
</tr>
<tr>
<td>F.8</td>
<td>Working with Electricity</td>
<td>431</td>
</tr>
<tr>
<td>F.8.1</td>
<td>General Conduct</td>
<td>432</td>
</tr>
<tr>
<td>F.9</td>
<td>Working with High Voltage</td>
<td>433</td>
</tr>
<tr>
<td>F.9.1</td>
<td>General Facts</td>
<td>434</td>
</tr>
<tr>
<td>F.9.2</td>
<td>Experimental Setup</td>
<td>434</td>
</tr>
<tr>
<td>F.9.3</td>
<td>Operation</td>
<td>434</td>
</tr>
<tr>
<td>F.10</td>
<td>Handling of Compressed Gas Bottles and Gas</td>
<td>435</td>
</tr>
<tr>
<td>F.10.1</td>
<td>General Facts</td>
<td>435</td>
</tr>
<tr>
<td>F.10.2</td>
<td>Transport</td>
<td>435</td>
</tr>
<tr>
<td>F.10.3</td>
<td>Storage</td>
<td>435</td>
</tr>
</tbody>
</table>
F.10.4 Valves and Fittings 435
F.10.5 At the Place of Use 436
F.11 Risk and Safety Phrases (R/S Phrases) 436
F.12 GHS (Globally Harmonized System of Classification and Labeling of Chemicals) 443
F.12.1 Principles of the GHS 443
F.13 GHS Pictograms 444
F.13.1 Precautionary Statements 451

Index 457