Index

Note: Page numbers with italicized f’s and t’s refer to figures and tables, respectively.

- abundance estimation, 374–5
- adaptation, 153
- aggression, 108–28
 - behavioral changes, 120–21
 - experiences, 108–9
- familiarity, 192
- hormones, 120
- information
 - contest costs, 110–11
 - cost-related, 118–19
 - fighting ability, 111–13
 - multiple contest experiences, 116
 - past contests, 113–18
 - resource value, 110
 - lateralization, 304
- physiological mechanisms, 119–26
- prior contests, 109
- social learning, 249–50
- alarm cues
 - damage-released, 40
 - learning, 44
 - sensory perception, 43. See also chemical cues;
 olfactory cues
- Allee effects, 366
- allocentric orientation, 337–44
- allopathy, 91–2
- ammonites, 326f
- AMPA receptors, 124–5
- amphibians, 326f
- androgens, 124, 311
- anthropogenic constraints, 73
- anticipatory behavior, 376–8
- antipredator behavior, 241–3
 - fast escape response, 303
 - lateralization, 300–303
 - predator evasion, 302–3
 - predator inspection, 301–2. See also predator–prey
 interactions
- antipredator response, 36–7
- aposematism, 46
- aquaculture, 375–84
 - anticipation, 376–8
 - capture-based, 389
- collective behavior, 383–4
 - conditioning, 376–8
- delay conditioning, 378–9
- escapees, 388–9
- group level, 377f
- habituation, 356–8
- individual decisions, 383–4
- individual level, 377f
- mortality rates, 386–7
- ontogeny, 375–6
- operant learning, 382–3
- Pavlovian learning, 378–9
- personality traits, 155
- reward conditioning, 379–82
- self-feeding, 383–4
- stock enhancement, 384–8
- trace conditioning, 378–9
- welfare issues, 421–5. See also fisheries
- archicortex, 325
- archistriatum, 325
- arginine vasotocin, 125–6
- association
 - kin-based, 201–3
 - learned, 12
 - simple, 14–15
 - strength, 231–2
- associative learning, 12, 43–4
- attack inhibition, 47
- attention, 14–15
- audience effect, 85–7, 280, 285
- autoshaping, 17
- avoidance behaviors, 39–40, 369, 371, 416–17
- avoidance conditioning, 332–4
- baits, 369–70
- Batesian mimicry, 46
- behavioral syndromes, 140–41
- behaviors
 - causation, 136
 - consistency, 145
 - coping styles, 140
 - evolution, 136, 153–4
 - experiences, 149–50
 - flexibility, 137
 - function, 136
 - growth-mortality hypothesis, 152
 - mating, 304

© 2011 Blackwell Publishing Ltd. Published 2011 by Blackwell Publishing Ltd.
behaviors (Continued)
objective measurements, 142–4
objectivity, 140
ontogeny, 136, 149–50
physical factors, 150
proximate causation, 146
spatial, 177
stability, 145
state-dependent models, 151–3
statistical models, 145–6
subjective measurements, 142–4
variability, 135, 145
blocking, 14
boldness, 138, 140–41
activity, 141
density-dependent selection, 151
experiences, 149–50
measures, 139
brain, 325–49
development, 325–6
divisions, 326
evolution, 325–6
size, 290–91
spatial cognition, 336–7
spatial memory, 337–40
breeding
cooperative, 262, 281
preference tests, 413
burrow, 170
by-product hypothesis, 122f, 124
by-product mutualism, 260f, 268–70
cognition, 268–9
foraging, 269–70. See also cooperation
bystander effect, 85–7
bystanders, 250
cannibalism, kin-biased, 205
capture success, 50–51
capture-based aquaculture, 389
cerebellum
classical conditioning, 327–31
trace, 330–31
delay motor classical conditioning, 328–30
egocentric orientation, 347–9
emotional learning, 331–2
fear conditioning, 334–6
lesions, 329f
spatial cognition, 336–7
trace motor classical conditioning, 330–31. See also brain; telencephalon
chemical cues, 70–72
anthropogenic constraints, 73
damage-released alarm cues, 60
disturbance cues, 60
familiarity recognition, 187, 190
field-based studies, 73
flexible learning, 62–4
imprinting, 175
information, 176
innate responses, 60–61
learned predator recognition, 70–72
learning, 60–61
neophobia, 60–61
non-predator cues, 66–7
predation risk, 62–4
 predator cues, 66–7
predator recognition, 62, 72–3
predator recognition continuum hypothesis, 68–70
risk assessment, 64
risk generalization, 66–8
sensory complementation, 65–6
threat-sensitive learning, 65–6
threat-sensitive responses, 59. See also alarm cues;
olfactory cues
chondrichthyans, 326f
cichlids, 281–3
classical conditioning, 15, 327–31
delay motor, 328–30
trace motor, 330–31
cleaner-client relationships, 283–6
audience effect, 285
categorization of clients, 283–4
cognitive abilities, 286–7
cants, 284–5
decision-making, 284–5
eavesdropping, 285
image scoring, 285
individual recognition of clients, 283–4
interspecific, 267–8
interspecific cleaning behavior, 267–8
Machiavellian intelligence, 283–6
pair inspections, 285–6
punishments, 285–6
relationship building, 284
tactile stimulation, 284–5
territories, 283
cognition, 15–17
by-product mutualism, 268–9
kin selection, 261–2
reciprocity, 264–5
spatial, 336–7
trait group selection, 270
welfare, 410
cognitive mapping, 339
collective motion, 218–20
absence of external stimuli, 219–20
dynamic polarized group, 221f
models, 218–9
statistical analysis, 219
swarm state, 219–20, 221f
torus formation, 221f
communication, 307–8
companion fish, 427
comparative psychology, 10
compass orientation, 171–2
competition, 26, 192
familiarity, 26
siblings, 206
conditioned response, 328–30
conditioned stimulus, 328–30, 378–9
conditioning
avoidance, 332–4
classical, 327–31
cue competition, 13
delay, 378–9
farmed fishes, 376–8
reward, 378, 379–82
trace, 378–9
conformity, 246
consciousness, 409–10
consistency, 145
<table>
<thead>
<tr>
<th>Term</th>
<th>Page Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>associaton, 191–3</td>
<td>191–3</td>
</tr>
<tr>
<td>familiarity recognition, 186–91</td>
<td>186–91</td>
</tr>
<tr>
<td>free-ranging fishes, 194–5</td>
<td>194–5</td>
</tr>
<tr>
<td>kin association in the wild, 201–3</td>
<td>201–3</td>
</tr>
<tr>
<td>kin avoidance, 205–6</td>
<td>205–6</td>
</tr>
<tr>
<td>kin discrimination, 201</td>
<td>201</td>
</tr>
<tr>
<td>kin recognition, 196–201</td>
<td>196–201</td>
</tr>
<tr>
<td>convergent validity, 142</td>
<td>142</td>
</tr>
<tr>
<td>cooperation, 258–71</td>
<td>258–71</td>
</tr>
<tr>
<td>breeding, 262, 281</td>
<td>262, 281</td>
</tr>
<tr>
<td>by-product mutalism, 268–70</td>
<td>268–70</td>
</tr>
<tr>
<td>categories, 258–9, 260r, 261–71</td>
<td>258–9, 260, 261–71</td>
</tr>
<tr>
<td>egg trading, 265</td>
<td>265</td>
</tr>
<tr>
<td>foraging, 269–70</td>
<td>269–70</td>
</tr>
<tr>
<td>kin selection, 261–3</td>
<td>261–3</td>
</tr>
<tr>
<td>predator inspection, 266–7</td>
<td>266–7</td>
</tr>
<tr>
<td>reciprocity, 263–8</td>
<td>263–8</td>
</tr>
<tr>
<td>study, 259</td>
<td>259</td>
</tr>
<tr>
<td>territory defense, 263–4</td>
<td>263–4</td>
</tr>
<tr>
<td>trait group selection, 270–71</td>
<td>270–71</td>
</tr>
<tr>
<td>cooperative foraging, 269–70</td>
<td>269–70</td>
</tr>
<tr>
<td>coping styles, 140</td>
<td>140</td>
</tr>
<tr>
<td>corpus cerebelli, 334</td>
<td>334</td>
</tr>
<tr>
<td>corticotrop-releasing factor (CRF), 125</td>
<td>125</td>
</tr>
<tr>
<td>cues</td>
<td></td>
</tr>
<tr>
<td>alarm, 40, 43–4</td>
<td>40, 43–4</td>
</tr>
<tr>
<td>competition, 13–14</td>
<td>13–14</td>
</tr>
<tr>
<td>electromagnetic, 172</td>
<td>172</td>
</tr>
<tr>
<td>social, 174</td>
<td>174</td>
</tr>
<tr>
<td>visual, 175–6</td>
<td>175–6</td>
</tr>
<tr>
<td>cultural inheritance, 96</td>
<td>96</td>
</tr>
<tr>
<td>curiosity, 141–2</td>
<td>141–2</td>
</tr>
<tr>
<td>D4 dopamine receptor (D4DR) gene, 148–9</td>
<td>148–9</td>
</tr>
<tr>
<td>damage-released alarm cues, 40, 60</td>
<td>40, 60</td>
</tr>
<tr>
<td>Darwinian evolution, 2</td>
<td>2</td>
</tr>
<tr>
<td>dear enemy effect, 193</td>
<td>193</td>
</tr>
<tr>
<td>delay conditioning, 378–9</td>
<td>378–9</td>
</tr>
<tr>
<td>delay motor classical conditioning, 328–30</td>
<td>328–30</td>
</tr>
<tr>
<td>demersal fishes, 362–3</td>
<td>362–3</td>
</tr>
<tr>
<td>demonstrators, 245</td>
<td>245</td>
</tr>
<tr>
<td>density-dependent selection, 150–51</td>
<td>150–51</td>
</tr>
<tr>
<td>deprivation level, 12</td>
<td>12</td>
</tr>
<tr>
<td>detection, 41–3</td>
<td>41–3</td>
</tr>
<tr>
<td>diet, 413–14</td>
<td>413–14</td>
</tr>
<tr>
<td>dilemma, 264</td>
<td>264</td>
</tr>
<tr>
<td>discriminant validity, 142</td>
<td>142</td>
</tr>
<tr>
<td>discrimination, 201</td>
<td>201</td>
</tr>
<tr>
<td>disturbance cues, 60</td>
<td>60</td>
</tr>
<tr>
<td>dominance hierarchies, 117, 193, 287</td>
<td>117, 193, 287</td>
</tr>
<tr>
<td>dopamine, 148</td>
<td>148</td>
</tr>
<tr>
<td>drive, 12</td>
<td>12</td>
</tr>
<tr>
<td>eavesdropping, 84–7</td>
<td>84–7</td>
</tr>
<tr>
<td>aggression, 249–50</td>
<td>249–50</td>
</tr>
<tr>
<td>audience effect, 85–7</td>
<td>85–7</td>
</tr>
<tr>
<td>benefits, 86–5</td>
<td>86–5</td>
</tr>
<tr>
<td>bystanders, 250</td>
<td>250</td>
</tr>
<tr>
<td>cleaner-client relationships, 285</td>
<td>285</td>
</tr>
<tr>
<td>Machiavellian intelligence, 279</td>
<td>279</td>
</tr>
<tr>
<td>mate choice, 84</td>
<td>84</td>
</tr>
<tr>
<td>social, 117–18</td>
<td>117–18</td>
</tr>
<tr>
<td>social learning, 240</td>
<td>240</td>
</tr>
<tr>
<td>ecological selection, 69–70</td>
<td>69–70</td>
</tr>
<tr>
<td>egg trading, 265</td>
<td>265</td>
</tr>
<tr>
<td>electrolocation, 170</td>
<td>170</td>
</tr>
<tr>
<td>electromagnetic cues, 172</td>
<td>172</td>
</tr>
<tr>
<td>emotional learning, 331–2</td>
<td>331–2</td>
</tr>
<tr>
<td>endocrine, 120</td>
<td>120</td>
</tr>
<tr>
<td>environmental variation, tracking, 23–6</td>
<td>23–6</td>
</tr>
<tr>
<td>episodic-like memory, 278</td>
<td>278</td>
</tr>
<tr>
<td>escape behavior, 220</td>
<td>220</td>
</tr>
<tr>
<td>escape speed, 50</td>
<td>50</td>
</tr>
<tr>
<td>escape trajectory, 50</td>
<td>50</td>
</tr>
<tr>
<td>evasion, 49–51</td>
<td>49–51</td>
</tr>
<tr>
<td>evolution, 153–4</td>
<td>153–4</td>
</tr>
<tr>
<td>experiences, 108–9</td>
<td>108–9</td>
</tr>
<tr>
<td>behavioral mechanisms, 115–16</td>
<td>115–16</td>
</tr>
<tr>
<td>behaviors, 149–50</td>
<td>149–50</td>
</tr>
<tr>
<td>individual recognition, 117</td>
<td>117</td>
</tr>
<tr>
<td>multiple contests, 116</td>
<td>116</td>
</tr>
<tr>
<td>personality traits, 149–50</td>
<td>149–50</td>
</tr>
<tr>
<td>projection, 278</td>
<td>278</td>
</tr>
<tr>
<td>winner and loser effects, 113–15</td>
<td>113–15</td>
</tr>
<tr>
<td>exploration, 14, 306–7</td>
<td>14, 306–7</td>
</tr>
<tr>
<td>exposure, 241</td>
<td>241</td>
</tr>
<tr>
<td>eyeblinks classical conditioning, 328–30</td>
<td>328–30</td>
</tr>
<tr>
<td>familiarity, 186–96</td>
<td>186–96</td>
</tr>
<tr>
<td>association function, 191–3</td>
<td>191–3</td>
</tr>
<tr>
<td>benefits, 192–3</td>
<td>192–3</td>
</tr>
<tr>
<td>chemical cues, 187, 190</td>
<td>187, 190</td>
</tr>
<tr>
<td>determinants, 195–6</td>
<td>195–6</td>
</tr>
<tr>
<td>development, 191</td>
<td>191</td>
</tr>
<tr>
<td>free-ranging fishes, 194–5</td>
<td>194–5</td>
</tr>
<tr>
<td>group living, 192</td>
<td>192</td>
</tr>
<tr>
<td>habitat-based, 231</td>
<td>231</td>
</tr>
<tr>
<td>laboratory studies, 187, 188–9t</td>
<td>187, 188–9t</td>
</tr>
<tr>
<td>mate choice, 193</td>
<td>193</td>
</tr>
<tr>
<td>mechanisms, 187–91</td>
<td>187–91</td>
</tr>
<tr>
<td>network analysis, 195</td>
<td>195</td>
</tr>
<tr>
<td>olfactory cues, 187, 190</td>
<td>187, 190</td>
</tr>
<tr>
<td>schooling preference, 190f</td>
<td>190f</td>
</tr>
<tr>
<td>territoriality, 193. See also kin recognition</td>
<td>193</td>
</tr>
<tr>
<td>fast escape response, 303</td>
<td>303</td>
</tr>
<tr>
<td>fear, 142</td>
<td>142</td>
</tr>
<tr>
<td>fear conditioning, 334–6</td>
<td>334–6</td>
</tr>
<tr>
<td>fearfulness-reactivity, 141</td>
<td>141</td>
</tr>
<tr>
<td>fish capture, 367–74</td>
<td>367–74</td>
</tr>
<tr>
<td>attraction, 369</td>
<td>369</td>
</tr>
<tr>
<td>avoidance, 369</td>
<td>369</td>
</tr>
<tr>
<td>baits, 369–70</td>
<td>369–70</td>
</tr>
<tr>
<td>behaviors, 369</td>
<td>369</td>
</tr>
<tr>
<td>escaping, 372–4</td>
<td>372–4</td>
</tr>
<tr>
<td>before physical contact with gear, 369–71</td>
<td>369–71</td>
</tr>
<tr>
<td>after physical contact with gear, 371</td>
<td>371</td>
</tr>
<tr>
<td>spatial distribution, 369</td>
<td>369</td>
</tr>
<tr>
<td>fish schools. See schooling fish fisheries, 362–75</td>
<td>362–75</td>
</tr>
<tr>
<td>abundance estimation, 374–5</td>
<td>374–5</td>
</tr>
<tr>
<td>fish capture, 367–74</td>
<td>367–74</td>
</tr>
<tr>
<td>learning, 366–7</td>
<td>366–7</td>
</tr>
<tr>
<td>learning skills, 362–3</td>
<td>362–3</td>
</tr>
<tr>
<td>migration pattern, 363–6</td>
<td>363–6</td>
</tr>
<tr>
<td>movement, 362–3</td>
<td>362–3</td>
</tr>
<tr>
<td>sea-ranching, 384–8</td>
<td>384–8</td>
</tr>
<tr>
<td>social learning, 363–6</td>
<td>363–6</td>
</tr>
<tr>
<td>spatial dynamics, 362–7</td>
<td>362–7</td>
</tr>
</tbody>
</table>
Index

fisheries (Continued)
 stock enhancement, 384–8
 welfare, 425. See also aquaculture
fishing gear
 avoidance, 368
 escaping, 372–4
 before physical contact, 369–71
 after physical contact, 371
 stimuli, 368–9
fishing vessels, 368
followers, 245
food patch, 21–3
 discrimination, 23–4
 sampling, 14
foraging, 10–28
 competition, 26
 conceptual framework, 11f
 cooperative, 269–70
 environmental variation, 23–6
 exploration, 14
 information transfer, 225
 lateralization, 306
 leadership, 245
 learning, 12–9
 patch use, 19–21
 performance, 21–3
 probability matching, 19–21
 reared fishes, 386
 sampling, 14
 social learning, 247–8
 forgetting, 25
free-ranging fishes, 194–5
 frequency-dependent selection, 150–51
 fright reaction, 40
 generalization, 13
 generalized learning, 69–70
Genius Twin-for-Tat strategy, 265
 giving-up time (GUT), 20
 glucocorticoids, 311
 group selection, 270
 growth-mortality hypothesis, 152
 guided learning, 241
 guppies, 94–5
habenula, 148
habits
 dangerous, avoiding, 40
 predation risk, 40
 preference tests, 411–13
 restocking, 155
 habituation, 49, 376–8
 Hamilton’s rule, 261–2
 Hebb learning, 360
 hermaphroditism, 265
 homing, 167, 177–9, 307
 hormones, 124–5
 hunting behavior, 269, 287–8
 image scoring, 285
 imprinting, 174
 incentive value, 12
 individual recognition, 117
 inertial guidance, 173–4
 information
 asocial sources, 250–52
 cost-related, 118–19
 eavesdropping, 117–18
 individual recognition, 117
 past contests, 113–18
 social sources, 250–52
 winner and loser effects, 113–16
 information primacy thesis, 14
 information transfer
 collective response to predators, 220–22
 feedback, 222–4
 group foraging, 225
 mechanisms, 222–4
 migration, 225
 informational cascades, 224
 innate recognition, 69
 inspection behavior, 47, 49
 intentional hunting, 287–8
 interference, 16
 internal clocks, 173–4
 interspecific cleaning behavior, 267–8
 isolation stress, 12
 iterated Prisoner’s Dilemma (iPD), 264–5, 267, 286
kin
 association in wild, 201–3
 avoidance, 205–6
 cannibalism, 205
 discrimination, 201
 shoal behavior, 201, 202–3
 sibling competition, 206
kin recognition
 field studies, 203–4
 laboratory studies, 199, 203–4
 schooling decisions, 197–9. See also familiarity
kin recognition theory, 196
kin selection, 260r, 261–3
 cognition, 261–2
 cooperative breeding, 262
 Hamilton’s rule, 261–2
 territory defense, 262–3
kleptoparasitism, 192
landmarks, 168–71, 175f, 339, 340f
latent learning, 14
lateral line organ, 171
lateralization, 298–318
 aggression, 304
 antipredator behavior, 300–303
 communication, 307–8
 costs, 314–16
 environmental factors, 310–11
 evidence, 298–9
 exploration, 306–7
 fast escape response, 303
 foraging behavior, 306
 hereditary basis, 308–9
 homing, 307
 individual differences, 308–12
 intraspecific variability, 316
 mating behavior, 304
 personality, 311–12
 population biases, 316–17
 predator evasion, 302–3
 response to novelty, 306–7
 selective advantages, 312–14
 sex differences, 309–10
shoaling, 304–6
social recognition, 304–6
spatial abilities, 307
visual, 299. See also brain
leaders, 245
learned association, 12
learning
association, 14–15
associative, 12, 43–4
attention, 14–15
chemical cues, 60–61
cognition, 15–17
drive, 12
emotional learning, 331–2
exploration, 14
and fish feeding, 27
generalized, 69–70
guided, 241
Hebb type, 360
landmarks, 168–71
latent, 14
Machiavellian intelligence, 288
mate choice, 83–4
after maturity, 83–4
memory, 18–19
operant, 382–3
orientation, 167–8, 174–6
Pavlovian, 378–9
predator, 37
predator–prey interactions, 38–9
reinforcement, 12
retention, 70–72
sampling, 14
skill transfer, 18–19
spatial, 169–71, 176–7
spatial-temporal scale, 361/6
specificity, 44–5
stimulus attractiveness, 12–14
taste aversion, 332–4
threat-sensitive, 65–6
time-place, 173–4
limbic system, 148
limited entry, 37
linear regression line, 146
linkage disequilibrium, 146
location, tracking, 166–7
loser effects
behavioral changes, 120–21
by-product hypothesis, 122/6, 124
metabolic costs, 121, 123
organizational hypothesis, 123/6, 124–5
physiological deviations, 121
losing experience, 113–15
Machiavellian intelligence, 277–91
brain size, 290–91
cleaning behavior, 283–6
cognitive abilities, 286–7, 291
cognitive mechanisms, 287–8
decision-making, 284–5, 289–90
evidence, 279–86
group-living cichlids, 281–3
hypothsis, 277–8, 291
individual recognition, 283–5
information gathering, 279–80, 289–90
intentional hunting, 287–8
learning, 289–90
predator inspection, 280–81
social learning, 288
transitive inference, 287. See also learning
major histocompatibility complex (MHC), 204–5
male traits, 96–9
male–male contests, 250
mate choice, 81–102
adaptive strategy, 99–101
cavesdropping, 84–7
familiarity, 193
geneic preferences, 94–6
learning after maturity, 83–4
sexual imprinting, 82–3
social learning, 248–9
social preferences, 94–6
mate-choice copying, 88–94
adaptive strategy, 99–101
allopatry, 91–2
benefits, 99–100
costs, 100–101
cultural evolution, 96
early environment, 92–3
experimental evidence, 88–9, 98–9
male traits, 96–9
model fish quality, 93–4
occurrence, 89
social learning, 248–9
sympathy, 91–2
theoretical approaches, 97–8
wild fish studies, 89–91
mating behavior, 304
memory, 18–19
episodic-like, 278
map-like, 345–7
orientation, 167–8
retrieval, 16
spatial, 24–5, 337–40. See also cognition
migration
information transfer, 225
landmarks, 168–9
olfactory cues, 178–9
predation risk, 40–41
social learning, 244–7, 363–6
tidal streams, 172–3
mimicry, 46
multitrait-multimethod matrix, 142
multivariate personality traits, 146
natural selection, 150–51, 153
neophobia, 60–61, 69
neostriatum, 325
network analysis, 195
neuroendocrine, 148
NMDA receptors, 124–5
non-predator cues, 67–8
norepinephrine, 148
novelty, response to, 306–7
objective measurements, 142–4
observational conditioning, 241–2
observers, 240, 243, 245
olfactory cues, 171
familiarity recognition, 187, 190
information transfer, 223
kin recognition, 203–4
migration, 178–9. See also alarm cues; chemical cues
ontogeny, 375–6
operant learning, 382–3
Index

optic tectum, 347–9
optimal foraging theory (OFT), 10–11, 20
organizational hypothesis, 123
orientation, 166–79
compass, 171–2
egocentric, 337, 347–9
flexibility, 174
inertial guidance, 173–4
internal clocks, 173–4
landmarks, 168–71
learning, 167–8, 174–6
location tracking, 166–7
memory use, 167–8
salmon homing, 177–9
social cues, 174
social learning, 244–7
spatial learning, 175
spatial learning capacity, 176–7
visual, 175–6
water movements, 172–3
osteichthyes, 326
overshadowing, 13
pain in fish, 417–19
pair inspections, 285–6
paleocortex, 325
paleostriatum, 325
pallium, 330–31
avoidance conditioning, 332–4
hippocampal, 345–7
taste aversion learning, 332–4
past contests, 113–18
winner and loser effects, 113–15
patch use, 19–21
Pavlovian learning, 378–9
pelagic fishes, 363
peptide neuromodulators, 125–6
performance, 21–3
personality traits, 135–57
adaptability, 150–53
anthropocentric thinking, 135
anthropomorphic interpretation, 141–2
consistency, 145
construct validity, 142
coping styles, 140
curiosity, 141
density-dependent selection, 150–51
description, 137
evolution, 153–4
experiences, 149–50
fearfulness-reactivity, 141
fish production and reproduction, 155
frequency-dependent selection, 150–51
growth-mortality hypothesis, 152
heritability, 147
labeling, 142
lateralization, 311–12
multivariate, 146
natural selection, 153
objective measurements, 142–4
objectivity, 140–42
observation, 137
ontogeny, 149–50
physical factors, 150
population dynamics, 155–6
proximate causation, 146–9
shyness-boldness, 138, 139
stability, 145
stable, 137
state-dependent models, 151–3
statistical models, 145–6
stress responses, 147–8
subjective measurements, 142–4
terminology, 137–40
variability, 145
welfare, 420
pet fish, 427
pleiotropy, 146
polarized light, 172
population dynamics, 155–6
populations, fish, structure, 227–9
positive degree correlation, 231
predation risk
assessment, 59, 64
flexible learning, 62–4
location tracking, 167
predator–prey interactions, 36–7
sensory complementation, 65–6
threat-sensitive learning, 65–6
predator evasion, 302–3
predator inspection
lateralization, 301–2
Machiavellian intelligence, 280–81
reciprocity, 266–7
trait group selection, 270–71
predator recognition
anthropogenic constraints, 73
conditioning, 72–3
field-based studies, 73
generalized learning, 69–70
innate vs. learned learning, 69
predator recognition continuum hypothesis, 68–70
predator–prey interactions, 36–52
approach, 47–9
avoidance, 38
cryptis, 42
detection, 41–3
encounter, 39–41
evasion, 49–51
learning, 38–9
migration, 40–41
predation risk in, 36
recognition, 43–6
stages, 37f, 38–51
predators
activity pattern changes, 36, 40–41
adaptations, 37f
chemical cues, 66–7
counterdefenses, 38–51
information gaining, 47
innate recognition, 69
learned recognition, 62, 69
learning, 37, 69–70
odor, 62–4, 68f
sensory perception, 43–4
preparedness, 12
prey
antipredator response, 36–7
aposematism, 46
avoidance behaviors, 38, 39–40
defenses, 37f
detection avoidance, 41–3
Index

inspection behavior, 47
learned predator recognition, 36, 43–4, 70–72
learning specificity, 44–5
pursuit deterrence, 47
sensory complementation, 65–6
sensory perception, 43–4
social learning, 47–8
threat-sensitive learning, 65–6
prey-subjugation skills, 17–18
prior contests, 109
Prisoner's Dilemma, 263–4, 280
proactive coping, 140
proactive interference, 16
probability matching, 19–21
proximate causation, 146–9
pseudo-reciprocity, 265
psychology, 10
punishments, 285–6
reactive coping, 140
reactive distance, 50
reactive speed, 50
reciprocity, 260, 263–8
familiarity, 186–96
innate, 69
kin, 200
kin association in the wild, 201–3
kin avoidance, 205–6
kin discrimination, 201
kin recognition, 196–201
lateralization, 304–6
learned, 69
learning specificity, 44–5
mimicry, 46
predator, 69–70, 72–3
search images, 45. See also predator–prey interactions
recognition genes, 261
recreational fishing, 425–6
reinforcement, 12
relative pay-off sum (RPS) learning, 26
Rescorla–Wagner theory, 18
research, 426–7
restocking, 155
retention, 70–72
retroactive interference, 16
reward conditioning, 378, 379–82
rheotaxis, 173
sailfin mollies, 94–5
salmon homing, 177–9
sampling, 14
schooling fish
collective decision-making, 225–7
collective motion, 218–20
collective response to predators, 220–22
familiarity, 190f
familiarity recognition, 188–9t
foraging, 225
individual identities, 229–32
information transfer, 222–4
feedback, 222–4
mechanisms, 222–4
informational status, 225–7
kinship, 197–9t
leadership, 225–7
migration, 225
models, 218–19
population, 227–9
social networks, 229–32
structure, 226
sea-ranching, 384–8
search images, 45
defense, 27, 382–3
sensory perception, 43–4
sensory plasticity, 43
sentience, 409–10
serotonin, 125, 148
sexual imprinting, 82–3
Shepard's law of generalization, 13
shoals
antipredator behavior, 241–3
collective behavior, 219–20
collective decision-making, 225–7
collective motion, 218–20
collective response to predators, 220–22
conformity, 246
escape behavior, 220
fidelity, 196
foraging, 246–7
informational status, 225–7
kin discrimination, 201
kin-based association, 202–3
lateralization, 304–6
leadership, 225–7
population, 227–9
social networks, 229–32
structure, 227–9
Trafalgar effect, 222
shyness-boldness, 149–50
density-dependent selection, 151
frequency-dependent selection, 151
sign-tracking, 17
trade-offs, 250–52. See also learning
social networks, 229–32
community structure, 232–3
social recognition, 304–6

...
sound, 171, 176
spatial cognition, 336–7
spatial learning, 169–71, 175f, 176–7, 345–7
spatial memory, 24–5, 337–40, 345–7
spatial navigation, 307, 340–44
spawning, 265
spawning migration, 178
stability, 145
standard network theory, 231
statistical models, 145–6
steroid hormones, 124–5
stimulus
attractiveness, 12–4
foraging, 12–4
substitution, 15
stress responses, 147–8
subjective measurements, 142–4
subtle guide hypothesis, 226
sun-compass response, 172
survival benefits, 50–51
S-wiggles, 23
sympatric speciation, 82–3
sympatry, 91–2
tactical deception, 278
taste aversion learning, 332–4
telecephalon
ablation, 340–44
embryonary development, 327f
emotional learning, 331–2
evolution, 325–6
lesions, 329f
map-like memories, 345–7
pallium, 330–31
avoidance conditioning, 332–4
hippocampal, 345–7
taste aversion learning, 332–4
spatial cognition, 336–7
spatial learning, 337–40, 341, 343f
spatial navigation, 340–44, 342f
variation, 326. See also brain; cerebellum
temperatures, 150
territoriality, 193, 262–3
territory defense, 262–3
threat-sensitive assessment, 59
tidal streams, 172–3
tide pools, 169, 170f
time-place learning, 173–4
Tit-for-Tat (TFT) strategy, 264–6, 280
trace conditioning, 378–9
trace motor classical conditioning, 330–31
Trafalgar effect, 222
trait group selection, 260r, 270–71
cognition, 270
predator inspection, 270–71
transitive inference, 287
unconditioned response, 328–30
unconditioned stimulus, 328–30, 378–9
validity, 142
visual cues, 175–6
visual lateralization, 299
water movements, 172–3
welfare, 405–28
abnormal behavior, 424r
aggression, 424r
avoidance behaviors, 416–17
behavioral flexibility, 408
cognition, 410
consciousness, 409–10
crowding, 422r
definitions, 408–9
deformities, 422r
fear in fish, 417–19
fin rot, 422r
fish use implications, 420–27
aquaculture, 421–5
companion fish, 427
fisheries, 425
recreational fishing, 425–6
research, 426–7
fish welfare, 406–7
food withdrawal, 423r
grading, 422r
handling, 422r
intraspecific variation, 408
personality in fish, 420
preference tests, 407–8
breeding, 413
diet, 413–14
physical habitat, 411–13
social interactions, 414–16
sentience, 409–10
slaughter, 423r
stocking density, 423r
transportation, 423r
viral diseases, 422r
winter diseases, 422r
winner and loser effects, 113–15
behavioral changes, 120–21
behavioral mechanisms, 115–16
by-product hypothesis, 122f, 124
information integration, 116
Machiavellian intelligence, 280
metabolic costs, 121
organizational hypothesis, 123f, 124–5
physiological deviations, 121
physiological mechanisms, 120. See also information
winter sheltering, 206