Contents

Preface xiv
Contributors xv

1 Probiotics and Health: From History to Future 1
Barry R. Goldin

1.1 Early history of the use of microorganisms for human benefit 1
1.2 Overview of probiotic studies and results for the past 35 years 2
1.3 Current evidence for probiotic health benefits 2
 1.3.1 Lactose intolerance 2
 1.3.2 Inflammatory bowel disease 3
 1.3.3 Treatment of gastroenteritis 4
 1.3.4 Cholesterol lowering 6
 1.3.5 Treatment for urogenital infections 6
 1.3.6 Treatment of allergic reactions 6
 1.3.7 Prevention of dental caries 7
 1.3.8 Treatment and prevention of cancer by probiotics 7
 1.3.9 Additional health benefits attributed to probiotics 8
 1.3.10 Conclusions based on past and present use of probiotics for health applications 8
1.4 Nutritional effects of probiotics 9
1.5 Future development and uses of probiotics for health application 9
 1.5.1 Probiotics as a platform for delivery of drugs, enzymes, hormones, nutrients and micronutrients 10
 1.5.2 Toxin sequestration 10
 1.5.3 Carcinogen detoxification 11
 1.5.4 Antibody production 11
 1.5.5 Treatment for enzyme deficiencies 11
 1.5.6 Other potential future directions for probiotics for medical use 13
1.6 Conclusions 13

2 The World’s Oldest Probiotic: Perspectives for Health Claims 17
Tomoyuki Sako

2.1 From theory to practice: the challenge of Dr Minoru Shirota 17
 2.1.1 The discovery of Lactobacillus casei strain Shirota 17
2.1.2 Early studies in Japan: the first clinical study era for Yakult and *L. casei* Shirota 18

2.1.3 Probiotic definition and the *L. casei* Shirota strain 19

2.2 Health benefits of Yakult and *L. casei* Shirota 19

2.2.1 Identification and characterisation of *L. casei* Shirota 19

2.2.2 Beneficial modulation of the intestinal microbiota 20

2.2.3 Improvement of stool consistency 20

2.2.4 Protection from infection 22

2.2.5 Immune modulation activity 23

2.2.6 Prophylactic effect of *L. casei* Shirota on cancer development 26

2.3 Safety 30

2.4 Health claims for *L. casei* Shirota and the product Yakult 31

2.5 Current perspectives 32

3 Probiotics: from Strain to Product 37

Arthur C. Ouwehand, Lisbeth Søndberg Svendsen and Gregory Leyer

3.1 Introduction 37

3.2 Isolating a potential probiotic strain 37

3.3 Producing probiotic strains on a large scale 41

3.4 Producing products containing probiotics 43

3.4.1 Fermented milk products 43

3.4.2 Cheese 44

3.4.3 Non-fermented milk drinks 45

3.4.4 Fruit and vegetable juices 45

3.4.5 Dried products 45

3.5 Probiotic products and feeding trials 46

3.6 Conclusion 47

4 Probiotics and Health Claims: Challenges for Tailoring their Efficacy 49

Christophe Chassard, Franck Grattepanche and Christophe Lacroix

4.1 Introduction 49

4.2 Current selection of probiotics: setting the scene for tailoring probiotics 50

4.2.1 Safety considerations 50

4.2.2 Technological considerations 51

4.2.3 Functionality and health benefits 52

4.3 Improving the assessment of probiosis 53

4.3.1 *In vitro* models for the assessment of probiosis 53

4.3.2 *In vivo* models for the assessment of probiosis 56

4.3.3 Clinical trials for the assessment of probiosis 58

4.4 Improving the discovery of probiotic strains 59

4.4.1 Exploring and isolating bacterial diversity 59

4.4.2 New generations of probiotics from new bacterial genera and with new targeted functions 60

4.5 Improving probiotic specificity 64

4.5.1 Future therapeutic strategies: combination of strains? 64

4.5.2 Nutritional manipulation 65
5 Probiotics: from Origin to Labeling from a European and Brazilian Perspective 75
Célia Lucia Ferreira, Marcos Magalhães, Miguel Gueimonde and Seppo Salminen
5.1 Introduction 75
5.2 Terminology and probiotics 76
5.3 Health claim regulation in the European Union 76
5.4 Health claims in Europe 76
5.5 Health claim regulation in Brazil 77
5.6 Defining health claims 78
5.6.1 Characterization of probiotic bacteria 79
5.6.2 Safety assessment 81
5.6.3 Human intervention studies for health claims 82
5.6.4 Totality of supporting evidence 83
5.7 Specific challenges for probiotics 84
5.7.1 Viability 84
5.7.2 Clinical studies demonstrating efficacy of probiotics in healthy subjects 84
5.7.3 Challenges in regulatory areas 85

6 Substantiating Health Benefit Claims for Probiotics in the United States 88
Mary Ellen Sanders
6.1 Introduction 88
6.1.1 Probiotics and health benefits 88
6.1.2 Probiotics: a term often misused 89
6.2 Health benefit claims allowable in the United States 90
6.2.1 FDA and FTC standards 90
6.2.2 Structure/function claims 90
6.2.3 Health claims 91
6.2.4 Medical food claims 92
6.3 Substantiation of health benefit claims for probiotics 92
6.3.1 Overriding considerations 92
6.3.2 Specific issues related to human efficacy studies 96
6.3.3 Key considerations for probiotic efficacy substantiation 97
6.4 Bridging the gap between the US consumer, probiotic science and commercial products 97
6.5 Conclusions 98

7 Health Claims and Dietary Guidance in the United States: Case “Reduced Cardiovascular Disease Risk” 102
Alice H. Lichtenstein
7.1 Introduction 102
7.2 Types of health claims 102
7.2.1 Definition 103
7.2.2 Authorized health claims 103
7.2.3 Qualified health claims 103
7.2.4 Structure/function claims 104
7.2.5 Nutrient content claims 104
7.3 Legislation governing US health claims 106
7.3.1 Nutrition Labeling and Education Act (NLEA 1990) 106
7.3.2 Food and Drug Administration Modernization Act (FDAMA 1997) 106
7.3.3 Consumer Health Information for Better Nutrition Initiative (2003) 107
7.4 Dietary guidance to reduce cardiovascular disease risk 108
7.4.1 Dietary Guidelines for Americans 109
7.4.2 National Cholesterol Education Program 110
7.4.3 Dietary Reference Intakes 111
7.4.4 American Heart Association 112
7.4.5 American Diabetes Association 114
7.4.6 American Cancer Society 114
7.4.7 Case study: evolution of Dietary Guidelines for Americans 114
7.5 Current challenges 116

8 Probiotics and Health Claims: a Japanese Perspective 118
Fang He and Yoshimi Benno

8.1 Introduction 118
8.2 FOSHU health claims 119
8.2.1 History of FOSHU 120
8.2.2 Specifics of FOSHU health claims 121
8.2.3 Procedure for obtaining permission for FOSHU 122
8.2.4 FOSHU health claim for probiotics: gastrointestinal conditions 124
8.3 Non-FOSHU health claims for probiotics in Japan 124

9 Regulation of Probiotics in China 126
Anu Lahteenmäki-Uutela

9.1 Introduction 126
9.2 Health food or medicine? 126
9.3 Health food regulations 127
9.4 Novel food regulation 131

10 Probiotics and Health Claims: an Indian Perspective 134
Jashbhai B. Prajapati and Nagendra P. Shah

10.1 The background 134
10.2 The status 134
10.3 Animal studies 135
10.3.1 Chicken 135
10.3.2 Albino rats 137
10.3.3 Pigs 138
10.3.4 Sheep 139
10.3.5 Calves 139
10.3.6 Fish 140
10.3.7 Post-larvae 140

10.4 Human studies 141
10.4.1 Probiotics in gut microbiology 141
10.4.2 Probiotics in diarrheal diseases 142
10.4.3 Effects on lipid profile 143
10.4.4 Morbidity and nutritional status 144

10.5 An Indian perspective on regulation of probiotics 145

11 The Role of Meta-analysis in the Evaluation of Clinical Trials on Probiotics 149
Hania Szajewska

11.1 Introduction 149
11.2 What is a systematic review? What is a meta-analysis? 149
11.3 How to conduct a systematic review 150
11.3.1 Formulation of the review question (the problem) 150
11.3.2 Searching 150
11.3.3 Selecting studies and collecting data 150
11.3.4 Assessment of methodological quality (i.e. the risk of bias in included trials) 151
11.3.5 Analysing the data and presenting the results 151

11.4 Why perform a meta-analysis? 151
11.5 Heterogeneity 152
11.6 How to interpret a forest plot 152
11.7 Critical appraisal of a systematic review 153
11.8 Published meta-analyses on the effects of probiotics 154
11.8.1 Acute gastroenteritis 154
11.8.2 Antibiotic-associated diarrhea 155
11.8.3 Clostridium difficile-associated diarrhea 155
11.8.4 Traveler’s diarrhea 156
11.8.5 Necrotizing enterocolitis 156
11.8.6 Helicobacter pylori infection 157
11.8.7 Functional gastrointestinal disorders 157
11.8.8 Irritable bowel syndrome 157
11.8.9 Inflammatory bowel disease 159
11.8.10 Functional constipation 160
11.8.11 Allergy prevention 160
11.8.12 Respiratory tract infections 162

11.9 Is a meta-analytical approach appropriate for assessing the efficacy of probiotics? 162
11.9.1 Arguments for pooling data 163
11.9.2 Arguments against pooling data 163

11.10 What could be the solution? 164
11.11 Unpublished data 164
11.12 Quality of included trials 165
11.13 Inconclusive systematic reviews and meta-analyses 166
11.14 Opposite conclusions 166
11.15 Summary and key messages 166

12 Applied Studies with Probiotics: Fundamentals for Meeting the Health Claims 171
Hannu Mykkänen, Silvia W. Gratz and Hani El-Nezami

12.1 Introduction 171
12.2 Mycotoxin problem 171
12.3 Lactobacillus rhamnosus strain effectively binds aflatoxin: in vitro findings 173
12.4 Animal models for studying the aflatoxin–probiotic interaction 174
12.5 Field studies with Lactobacillus rhamnosus strain in aflatoxin-exposed populations 175

13 Probiotics Research: the Pediatric Perspective 178
Karl Zwiauer

13.1 Introduction 178
13.2 Development of the gastrointestinal flora postnatally 178
13.3 Probiotics in infant nutrition 181
13.3.1 Growth of healthy infants 181
13.3.2 Probiotics in preterm infants 182
13.3.3 Safety concerns 183
13.4 Clinical effect of probiotics in children 184
13.4.1 Prevention of allergic disease: food hypersensitivity 184
13.4.2 Atopic dermatitis 185
13.4.3 Prevention of antibiotic-associated diarrhea 187
13.4.4 Acute gastroenteritis and community-acquired diarrhea 188
13.4.5 Irritable bowel syndrome and constipation 190
13.4.6 Infantile colic 192
13.4.7 Inflammatory bowel disease 192
13.4.8 Oral health effects: caries 193
13.4.9 Other clinical conditions 193
13.5 Summary and key messages 194

14 Probiotics and Health Claims Related to OTC Products and Pharmaceutical Preparations 199
Frank M. Unger and Helmut Viernstein

14.1 Introduction 199
14.2 Production, processing and formulation of probiotic cultures for pharmaceutical purposes 199
14.3 Clinical studies 200
14.3.1 Gastroenterology 200
14.3.2 Gynecology 212
14.3.3 Dentistry/stomatology 214
14.4 Evaluation and outlook

14.4.1 Antibiotic-associated diarrhea and *Clostridium difficile* disease 215
14.4.2 Traveler’s diarrhea 215
14.4.3 *Helicobacter pylori* infection 216
14.4.4 Lactose intolerance 216
14.4.5 Irritable bowel syndrome 217
14.4.6 Ulcerative colitis 217
14.4.7 Pouchitis 218
14.4.8 Crohn’s disease 218
14.4.9 Bacterial vaginosis 218
14.4.10 Gingivitis, reduction of plaque and alleviation of gum bleeding 218
14.4.11 Selected experimental approaches to probiotic products with new properties and in new indications 218

15 Probiotics and Health Claims: the Perspective of the Feed Industry 223
Anja Meieregger, Elisabeth Mayrhuber and Hans Peter Lettner

15.1 Introduction and history 223

15.2 Feed probiotics versus food probiotics 225
15.2.1 Gram-positive non-sporulating bacteria 227
15.2.2 *Bacillus* species 227
15.2.3 Yeasts 228
15.2.4 Filamentous fungi 228

15.3 Efficacy 228

15.4 Feed probiotics 229
15.4.1 Fundamentals 229
15.4.2 Industrial production 236

15.5 Authorisation processes 242

15.6 Probiotics as performance enhancers: conclusions 246

16 Developing LGG®Extra, a Probiotic Multispecies Combination 249
Maija Saxelin, Eveliina Myllyluoma and Riitta Korpela

16.1 Introduction 249

16.2 Strain selection 250

16.3 Probiotic characteristics of the strains 250
16.3.1 Gastrointestinal persistence and colonisation 250
16.3.2 Influence on human intestinal microbiota 251
16.3.3 Immunological effects in vitro 251
16.3.4 Potential for reducing dietary toxins 252
16.3.5 Safety aspects 253

16.4 Clinical studies on the probiotic multispecies LGG®Extra combination 254
16.4.1 Relieving symptoms of irritable bowel syndrome 254
16.4.2 Eradication of *Helicobacter pylori* and *Candida* 255
16.4.3 Other research areas 256

16.5 Conclusions 258
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Probiotics and Health Claims: How to Be Met by SMEs?</td>
<td>263</td>
</tr>
<tr>
<td></td>
<td>Miguel Gueimonde and Sampo J. Lahtinen</td>
<td></td>
</tr>
<tr>
<td>17.1</td>
<td>Introduction</td>
<td>263</td>
</tr>
<tr>
<td>17.2</td>
<td>Developing proprietary probiotic strains</td>
<td>265</td>
</tr>
<tr>
<td>17.3</td>
<td>Probiotic research by SMEs using strains from larger companies</td>
<td>267</td>
</tr>
<tr>
<td>17.4</td>
<td>Example of successful probiotic research program by an SME company:</td>
<td>268</td>
</tr>
<tr>
<td></td>
<td>the development of probiotic strains Bifidobacterium longum 46 and</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B. longum 2C</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>Probiotic Products: How Can They Meet the Requirements?</td>
<td>271</td>
</tr>
<tr>
<td></td>
<td>Wolfgang Kneifel</td>
<td></td>
</tr>
<tr>
<td>18.1</td>
<td>Introduction</td>
<td>271</td>
</tr>
<tr>
<td>18.2</td>
<td>Quality criteria of probiotics</td>
<td>271</td>
</tr>
<tr>
<td>18.2.1</td>
<td>Basic composition and nutrient profile</td>
<td>272</td>
</tr>
<tr>
<td>18.2.2</td>
<td>Nature, identity and safety of probiotic strains</td>
<td>273</td>
</tr>
<tr>
<td>18.2.3</td>
<td>Viability and probiotic viable count</td>
<td>275</td>
</tr>
<tr>
<td>18.3</td>
<td>Future perspectives</td>
<td>279</td>
</tr>
<tr>
<td>19</td>
<td>Probiotics and Health Claims: Hurdles for New Applications?</td>
<td>283</td>
</tr>
<tr>
<td></td>
<td>Lorenzo Morelli</td>
<td></td>
</tr>
<tr>
<td>19.1</td>
<td>Introduction</td>
<td>283</td>
</tr>
<tr>
<td>19.2</td>
<td>Identifying the hurdles</td>
<td>283</td>
</tr>
<tr>
<td>19.2.1</td>
<td>Characterisation</td>
<td>283</td>
</tr>
<tr>
<td>19.2.2</td>
<td>Relationship to health</td>
<td>285</td>
</tr>
<tr>
<td>19.2.3</td>
<td>Scientific substantiation</td>
<td>287</td>
</tr>
<tr>
<td>19.3</td>
<td>Approaching the hurdles</td>
<td>287</td>
</tr>
<tr>
<td>19.3.1</td>
<td>Hurdle characterisation</td>
<td>287</td>
</tr>
<tr>
<td>19.3.2</td>
<td>Relationship to health</td>
<td>291</td>
</tr>
<tr>
<td>19.3.3</td>
<td>Scientific substantiation</td>
<td>292</td>
</tr>
<tr>
<td>19.4</td>
<td>New perspectives</td>
<td>293</td>
</tr>
<tr>
<td>19.4.1</td>
<td>General considerations</td>
<td>293</td>
</tr>
<tr>
<td>19.4.2</td>
<td>Functional genomics</td>
<td>295</td>
</tr>
<tr>
<td>19.5</td>
<td>Conclusions</td>
<td>299</td>
</tr>
<tr>
<td>20</td>
<td>Probiotics and Innovation</td>
<td>303</td>
</tr>
<tr>
<td></td>
<td>Jean-Michel Antoine, Jean-Michel Faurie, Raish Oozeer, Johan van</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hylckama Vlieg, Jan Knol, Herwig Bachmann and Joël Doré</td>
<td></td>
</tr>
<tr>
<td>20.1</td>
<td>Introduction</td>
<td>303</td>
</tr>
<tr>
<td>20.1.1</td>
<td>Early history</td>
<td>303</td>
</tr>
<tr>
<td>20.1.2</td>
<td>Recent history</td>
<td>303</td>
</tr>
<tr>
<td>20.2</td>
<td>Not all probiotics are the same: genomic perspective</td>
<td>305</td>
</tr>
<tr>
<td>20.3</td>
<td>Not all probiotic foods are the same: functional perspective</td>
<td>307</td>
</tr>
<tr>
<td>20.4</td>
<td>Not all probiotics are cross-talking in the same way:</td>
<td>309</td>
</tr>
<tr>
<td></td>
<td>dialogue with the host</td>
<td></td>
</tr>
</tbody>
</table>
20.4.1 Dialogue with the human intestinal microbiota: a logical trigger for innovation 310
20.4.2 Novel functional targets for the human intestinal microbiota 312
20.5 European regulatory perspective: a threat or an opportunity? 314
 20.5.1 European regulatory perspective: a threat? 315
 20.5.2 For innovation in probiotics, the present regulatory requirements are an opportunity 316
20.6 Conclusion 318

Index 323