Contents

Preface xi
Series Preface xiii
Introduction xv

1 The Physiology of 3D Perception
1.1 Binocular Viewing or Human Stereopsis
1.2 The Mismatch of Accommodation and Disparity and the Depths of Focus and of Field
1.3 Distance Scaling of Disparity
1.4 Interocular Crosstalk
1.5 Psychological Effects for Depth Perception
1.6 High-Level Cognitive Factor
Acknowledgments
References

2 Stereoscopic Displays
2.1 Stereoscopic Displays with Area Multiplexing
2.1.1 Retarders for the generation of polarizations
2.1.2 Wire grid polarizers for processing of the second view
2.1.3 Stereoscopic display with two LCDs
2.2 Combined Area and Time Division Multiplex for 3D Displays
2.3 Stereoscopic Time Sequential Displays
2.3.1 Time sequential viewing with an active retarder
2.3.2 Fast time sequential 3D displays by the use of OCB LCDs
2.3.3 Time sequential 3D displays with black insertions
2.4 Special Solutions for Stereoscopic Displays
2.5 Stereoscopic Projectors
2.6 Interleaved, Simultaneous, and Progressive Addressing of AMOLEDs and AMLCDs
2.7 Photo-Induced Alignment for Retarders and Beam Splitters
Acknowledgments
References

COPYRIGHTED MATERIAL
3 Autostereoscopic Displays 73
3.1 Spatially Multiplexed Multiview Autostereoscopic Displays with Lenticular Lenses 73
3.2 Spatially Multiplexed Multiview Autostereoscopic Displays with Switchable Lenticular Lenses 85
3.3 Autostereoscopic Displays with Fixed and Switchable Parallax Barriers 95
3.4 Time Sequential Autostereoscopic Displays and Directional Backlights 104
3.4.1 Time sequential displays with special mirrors or 3D films 105
3.4.2 Time sequential displays with directionally switched backlights 109
3.5 Depth-Fused 3D Displays 115
3.6 Single and Multiview 3D Displays with a Light Guide 125
3.7 Test of 3D Displays and Medical Applications 129
Acknowledgments 129
References 130

4 Assessment of Quality of 3D Displays 133
4.1 Introduction and Overview 133
4.2 Retrieving Quality Data from Given Images 135
4.3 Algorithms Based on Objective Measures Providing Disparity or Depth Maps 136
4.3.1 The algorithm based on the sum of absolute differences 136
4.3.2 Smoothness and edge detection in images 140
4.4 An Algorithm Based on Subjective Measures 146
4.5 The Kanade–Lucas–Tomasi (KLT) Feature Tracking Algorithm 153
4.6 Special Approaches for 2D to 3D Conversion 158
4.6.1 Conversion of 2D to 3D images based on motion parallax 159
4.6.2 Conversion from 2D to 3D based on depth cues in still pictures 161
4.6.3 Conversion from 2D to 3D based on gray shade and luminance setting 162
4.7 Reconstruction of 3D Images from Disparity Maps Pertaining to Monoscopic 2D or 3D Originals 165
4.7.1 Preprocessing of the depth map 165
4.7.2 Warping of the image creating the left and the right eye views 167
4.7.3 Disocclusions and hole-filling 172
4.7.4 Special systems for depth image-based rendering (DIBR) 176
Acknowledgments 182
References 183

5 Integral Imaging 185
5.1 The Basis of Integral Imaging 186
5.2 Enhancement of Depth, Viewing Angle, and Resolution of 3D Integral Images 188
5.2.1 Enhancement of depth 189
5.2.2 Enlargement of viewing angle 193
5.2.3 Enhancing resolution 195
5.3 Integral Videography 196
5.4 Convertible 2D/3D Integral Imaging 207
Acknowledgments 214
References 214

6 Holography for 3D Displays 217
6.1 Introduction and Overview 217
6.2 Recording a Hologram and Reconstruction of the Original 3D Image 218
6.3 A Holographic Screen 227
<table>
<thead>
<tr>
<th>Chapter</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.4</td>
<td>Digital Holography Based on the Fourier Transform</td>
<td>229</td>
</tr>
<tr>
<td>6.5</td>
<td>A Holographic Laser Projector</td>
<td>232</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td></td>
<td>235</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>235</td>
</tr>
<tr>
<td>7</td>
<td>Volumetric 3D Displays</td>
<td>237</td>
</tr>
<tr>
<td>7.1</td>
<td>The Nature of Volumetric Displays</td>
<td>237</td>
</tr>
<tr>
<td>7.2</td>
<td>Accessing and Activating Voxels in Static Volumetric Displays</td>
<td>238</td>
</tr>
<tr>
<td>7.3</td>
<td>Swept Volume or Mechanical 3D Displays</td>
<td>245</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td></td>
<td>252</td>
</tr>
<tr>
<td>References</td>
<td></td>
<td>252</td>
</tr>
<tr>
<td>8</td>
<td>A Shot at the Assessment of 3D Technologies</td>
<td>253</td>
</tr>
<tr>
<td>Index</td>
<td></td>
<td>257</td>
</tr>
</tbody>
</table>