Contents

List of Contributors xv
Series Preface xix
Preface xxi

PART I Fundamentals of MBE 1

1. History of MBE 3
 Tom Foxon
 1.1 Introduction 3
 1.2 The MBE Process 4
 1.3 Controlled n and p Doping 10
 1.4 Modified Growth Procedures 10
 1.5 Gas-Source MBE 11
 1.6 Low-Dimensional Structures 11
 1.7 III–V Nitrides, Phosphides, Antimonides and Bismides and Other Materials 13
 1.7.1 III-Nitrides 14
 1.7.2 III-Phosphides 15
 1.7.3 III-Antimonides 15
 1.7.4 III-Bismides 15
 1.7.5 Highly Mismatched Alloys 16
 1.7.6 II–VI s 16
 1.7.7 IV–VI s 17
 1.7.8 SiGe 17
 1.7.9 2D Materials 18
 1.8 Early MBE-Grown Devices 18
 1.9 Summary 18
 Acknowledgments 18
 References 19

2. General Description of MBE 23
 Yoshiji Horikoshi
 2.1 Introduction 23
 2.2 High-Vacuum Chamber System 24
Contents

2.3 Atomic and Molecular Beam Sources 25
2.4 Measurement of MBE Growth Parameters 28
 2.4.1 Measurement of Background Atmospheric Conditions 29
 2.4.2 Measurement of Substrate Temperature 29
 2.4.3 Measurement of Atomic/Molecular Beam Intensity 30
2.5 Surface Characterization Tools for MBE Growth 31
 2.5.1 Reflection High-Energy Electron Diffraction 33
 2.5.2 Optical Diagnostic Methods 35
2.6 Summary 37
Acknowledgments 37
References 38

3. Migration-Enhanced Epitaxy and its Application 41
Yoshiji Horikoshi

 3.1 Introduction 41
 3.2 Toward Atomically Flat Surfaces in MBE 42
 3.3 Principle of MEE 44
 3.4 Growth of GaAs by MEE 48
 3.5 Incommensurate Deposition and Migration of Ga Atoms 49
 3.6 Application of MEE Deposition Sequence to Surface Research 50
 3.7 Application of MEE to Selective Area Epitaxy 51
 3.8 Summary 54
Acknowledgments 54
References 55

4. Nanostructure Formation Process of MBE 57
Koichi Yamaguchi

 4.1 Introduction 57
 4.2 Growth of Quantum Wells 58
 4.3 Growth of Quantum Wires and Nanowires 60
 4.4 Growth of Quantum Dots 64
 4.5 Conclusion 71
References 72

5. Ammonia Molecular Beam Epitaxy of III-Nitrides 73
Micha N. Fireman and James S. Speck

 5.1 Introduction 73
 5.2 III-Nitride Fundamentals 74
 5.3 Ammonia Molecular Beam Epitaxy 77
 5.4 Ternary Nitride Alloys and Doping 82
 5.5 Conclusions 86
References 86
6. Mechanism of Selective Area Growth by MBE 91
 Katsumi Kishino
 6.1 Background 91
 6.2 Growth Parameters for Ti Mask SAG 92
 6.3 Initial Growth of Nanocolumns 94
 6.4 Nitrogen Flow Rate Dependence of SAG 95
 6.5 Diffusion Length of Ga Adatoms 96
 6.6 Fine Control of Nanocolumn Array by SAG 98
 6.7 Controlled Columnar Crystals from Micrometer to Nanometer Size 100
 6.8 Nanotemplate SAG of AlGaN Nanocolumns 101
 6.9 Conclusions and Outlook 103
 References 104

PART II MBE Technology for Electronic Devices Application 107

7. MBE of III-Nitride Semiconductors for Electronic Devices 109
 Rolf J. Aidam, O. Ambacher, E. Diwo, B.-J. Godejohann, L. Kirste, T. Lim, R. Quay, and P. Waltereit
 7.1 Introduction 109
 7.2 MBE Growth Techniques 110
 7.2.1 Plasma-Assisted MBE PAMBE 110
 7.2.2 Ammonia MBE 114
 7.2.3 Doping 117
 7.3 AlGaN/GaN High Electron Mobility Transistors on SiC Substrate 118
 7.3.1 PAMBE 118
 7.3.2 Ammonia MBE 121
 7.4 AlGaN/GaN High Electron Mobility Transistors on Si Substrate 123
 7.4.1 PAMBE 123
 7.4.2 Ammonia MBE 124
 7.5 HEMTs with Thin Barrier Layers for High-Frequency Applications 125
 7.5.1 AlN/GaN Heterostructures 126
 7.5.2 Lattice-Matched AlInN and AlGaInN Barrier Layers 127
 7.6 Vertical Devices 130
 7.6.1 p–n Junction 130
 7.6.2 Current Aperture Vertical Electron Transistors 131
 References 132

8. Molecular Beam Epitaxy for Steep Switching Tunnel FETs 135
 Salim El Kazzi
 8.1 Introduction 135
 8.2 TFET Working Principle 136
PART III MBE for Optoelectronic Devices

9. Applications of III–V Semiconductor Quantum Dots in Optoelectronic Devices
Kouichi Akahane and Yoshiaki Nakata

9.1 Introduction: Self-assembled Quantum Dots 151
9.2 Lasers Based on InAs Quantum Dots Grown on GaAs Substrates 152
 9.2.1 S–K Growth Mode of InAs Islands on GaAs 152
 9.2.2 Emission Wavelength Control by the Buried Strain Relaxation Layer 155
 9.2.3 InAs Quantum-Dot Lasers 157
9.3 InAs QD Optical Device Operating at Telecom Band (1.55 μm) 158
9.4 Recent Progress in QD Lasers 164
9.5 Summary 165
References 165

10. Applications of III–V Semiconductors for Mid-infrared Lasers
Yuichi Kawamura

10.1 Introduction 169
10.2 GaSb-Based Lasers 170
10.3 InP-Based Lasers 170
10.4 InAs-Based Lasers 173
10.5 Conclusion 174
References 174

11. Molecular Beam Epitaxial Growth of Terahertz Quantum Cascade Lasers
Harvey E. Beere and David A. Ritchie

11.1 Introduction 175
11.2 Epitaxial Challenges 179
 11.2.1 Growth Rate Calibration 179
 11.2.2 Growth Rate Stability 184
 11.2.3 Growth Rate Uniformity 186
 11.2.4 Doping Accuracy 187
References 189
12. MBE of III-Nitride Heterostructures for Optoelectronic Devices 191

12.1 Introduction 191
12.2 Low-Temperature Growth of Nitrides by PAMBE 192
12.3 Applications of PAMBE in Growth of Nitride Laser Diodes 196
12.3.1 Enhancement of Optical Confinement Factor by InGaN Waveguide 197
12.3.2 Elimination of Light Leakage to GaN Substrate Using a Thick InGaN Waveguide 200
12.3.3 Long-Wavelength Laser Diodes by PAMBE 202
12.3.4 High-Power Blue Laser Diodes by PAMBE 203
12.3.5 Lifetime of PAMBE Laser Diodes 203
12.4 New Concepts of LDs with Tunnel Junctions 205
12.5 Summary 206
Acknowledgments 207
References 207

13. III-Nitride Quantum Dots for Optoelectronic Devices 211
Pallab Bhattacharya, Thomas Frost, Shafat Jahangir, Saniya Deshpande, and Arnab Hazari

13.1 Introduction 211
13.2 Molecular Beam Epitaxy of InGaN/GaN Self-organized Quantum Dots 212
13.2.1 Optical Properties 217
13.3 Quantum Dot Wavelength Converter White Light-Emitting Diode 220
13.4 Quantum Dot Lasers 223
13.4.1 Epitaxy of InAlN and QD Laser Heterostructure 223
13.4.2 Steady-State Laser Characteristics 225
13.4.3 Small-Signal Modulation Characteristics 227
13.5 Summary and Future Prospects 229
References 230

14. Molecular-Beam Epitaxy of Antimonides for Optoelectronic Devices 233
Eric Tournie

14.1 Introduction 233
14.2 Epitaxy of Antimonides: A Brief Historical Survey 235
14.3 Molecular-Beam Epitaxy of Antimonide 236
14.3.1 Substrate Preparation 236
14.3.2 Doping of III–Sb Compounds 237
14.3.3 Control of Alloy Compositions 239
14.3.4 No-Common-Atom Interfaces 241
14.3.5 Growth of III–Sbs on Highly Mismatched Substrates 241
14.4 Outlook 243
Acknowledgments 244
References 244
15. III–V Semiconductors for Infrared Detectors

P. C. Klipstein

15.1 Introduction 247
15.2 InAsSb XBn Detectors 251
15.3 T2SL XBp Detectors 255
15.4 Conclusion 262
Acknowledgments 262
References 262

16. MBE of III–V Semiconductors for Solar Cells

Takeyoshi Sugaya

16.1 Introduction 265
16.2 InGaP Solar Cells 266
16.3 InGaAsP Solar Cells Lattice-Matched to GaAs 268
16.4 InGaAsP Solar Cells Lattice-Matched to InP 271
16.5 Growth of Tunnel Junctions for Multi-Junction Solar Cells 272
16.6 Summary 277
References 277

PART IV Magnetic Semiconductors and Spintronics Devices

17. III–V-Based Magnetic Semiconductors and Spintronics Devices

Hiro Munekata

17.1 Introduction 281
17.2 Hole-Mediated Ferromagnetism 282
17.3 Molecular Beam Epitaxy and Materials Characterization 285
17.4 Studies in View of Spintronics Applications 293
17.5 Conclusions and Prospects 296
Acknowledgments 296
References 296

18. III-Nitride Dilute Magnetic Semiconductors

Yi-Kai Zhou and Hajime Asahi

18.1 Introduction 299
18.2 Transition-Metal-Doped GaN
18.2.1 GaMnN 300
18.2.2 GaCrN 301
18.3 Rare-Earth-Doped III-Nitrides
18.3.1 GaGdN and InGaGdN 303
18.3.2 GaDyN 308
18.3.3 Other RE-Doped III-Nitrides 308
18.4 Device Applications
18.4.1 TMR in GaCrN-Based Trilayer Structures 309
18.4.2 Interlayer Interaction Between GaDyN Layers 310
18.4.3 CP-LD and Other Spintronic Device Applications 310
18.5 Summary 312
References 312

19. MBE Growth, Magnetic and Magneto-optical Properties of II–VI DMSs 315
Shinji Kuroda
19.1 II–VI DMSs Doped with Mn 315
19.2 II–VI DMSs Doped with Cr and Fe 319
19.3 ZnO-Based DMSs 323
References 325

20. Ferromagnet/Semiconductor Heterostructures and Nanostructures Grown by Molecular Beam Epitaxy 329
Masaaki Tanaka
20.1 Introduction 329
20.2 MnAs on GaAs(001) and Si(001) Substrates 330
20.2.1 Ferromagnetic MnAs Thin Films Grown on GaAs(001) Substrates 330
20.2.2 Ferromagnetic MnAs Thin Films Grown on Si(001) Substrates 334
20.3 GaAs:MnAs Granular Materials: Magnetoresistive Effects and Related Devices 337
20.3.1 Growth and Structure of MnAs Nanoparticles Embedded in GaAs 337
20.3.2 MnAs Nanoparticles as a Spin Injector and Spin Detector 338
20.3.3 AlAs Tunnel Barrier Thickness Dependence of TMR Properties 342
20.4 Summary 345
Acknowledgments 345
References 346

21. MBE Growth of Ge-Based Diluted Magnetic Semiconductors 349
Tianxiao Nie, Jianshi Tang, and Kang L. Wang
21.1 Introduction 349
21.2 MBE Growth of Mn$_x$Ge$_{1-x}$ Thin Film and Nanostructures 351
21.2.1 Growth of Mn$_x$Ge$_{1-x}$ Thin Film and QDs 351
21.2.2 Growth of Mn$_x$Ge$_{1-x}$ Nanodisks and Nanomeshes 353
21.3 Magnetic Properties of Mn$_x$Ge$_{1-x}$ Thin Films and Nanostructures 355
21.3.1 Magnetic Properties of Mn$_x$Ge$_{1-x}$ Thin Films and QDs 355
21.3.2 Magnetic Property of Mn$_x$Ge$_{1-x}$ Nanodisks and Nanomeshes 357
21.4 Electric-Field-Controlled Ferromagnetism and Magnetoresistance 359
21.5 Conclusion 362
Acknowledgments 362
References 363
PART V Challenge of MBE to New Materials and New Researches

22. Molecular Beam Epitaxial Growth of Topological Insulators

Xiao Feng, Ke He, Xucun Ma, and Qi-Kun Xue

22.1 Introduction
22.2 MBE Growth of Bi$_2$Se$_3$ Family Three-Dimensional Topological Insulators
22.3 Defects in MBE-Grown Bi$_2$Se$_3$ Family TI Films
 22.3.1 Dislocations
 22.3.2 Point Defects
 22.3.3 Domain Walls
22.4 Band Structure Engineering in Ternary Bi$_2$Se$_3$ Family TIs
22.5 Magnetically Doped Bi$_2$Se$_3$ Family TIs
22.6 MBE Growth of 2D TI Materials
22.7 Summary
References

23. Applications of Bismuth-Containing III–V Semiconductors in Devices

Masahiro Yoshimoto

23.1 Introduction
23.2 Growth of GaAsBi
23.3 Properties of GaAsBi
23.4 Applications of GaAsBi
 23.4.1 LEDs
 23.4.2 LDs
 23.4.3 Solar Cells
 23.4.4 Terahertz Detectors
23.5 Applications of Other Bi-Containing Semiconductors
 23.5.1 GaSbBi LDs
 23.5.2 Mid-Infrared Photodetectors
23.6 Summary
References

24. MBE Growth of Graphene

J. Marcelo J. Lopes

24.1 Introduction
24.2 MBE of Graphene on Metals
24.3 MBE of Graphene on Semiconductors
24.4 MBE of Graphene on Oxides and Other Dielectrics
24.5 Conclusions
Acknowledgments
References
25. MBE Growth and Device Applications of Ga$_2$O$_3$
Masataka Higashihwaki

25.1 Introduction 411
25.2 Physical Properties of Ga$_2$O$_3$ 411
 25.2.1 Polymorphs 411
 25.2.2 Material Properties of β-Ga$_2$O$_3$ 412
25.3 Ga$_2$O$_3$ Electronic Device Applications 414
25.4 Melt-Grown Bulk Single Crystals 414
25.5 Ga$_2$O$_3$ MBE Growth 414
 25.5.1 MBE System and Growth Condition 414
 25.5.2 Comparisons Between Ozone- and RF-Plasma MBE Techniques 415
 25.5.3 MBE Growth Kinetics of Ga$_2$O$_3$ 415
 25.5.4 Homoepitaxial Growth of Ga$_2$O$_3$ Thin Films on Ga$_2$O$_3$ Native Substrates 416
 25.5.5 n-Type Doping 416
 25.5.6 Heterostructures 418
25.6 Transistor Applications 419
 25.6.1 MESFETs 419
 25.6.2 Depletion-Mode Ga$_2$O$_3$ MOSFETs 419
 25.6.3 Field-Plated MOSFETs 420
25.7 Summary 421
References 421

26. Molecular Beam Epitaxy for Oxide Electronics 423
Abhinav Prakash and Bharat Jalan

26.1 Introduction 423
26.2 Structure–Property Relationship in Perovskite Oxides 423
 26.2.1 Lattice Degrees of Freedom 424
 26.2.2 Interfacial Physics 427
 26.2.3 Thin-Film Growth Approaches 428
26.3 Oxide Molecular Beam Epitaxy 430
 26.3.1 Historical Perspective 430
 26.3.2 Design of Oxide MBE 431
 26.3.3 Challenges with Oxide MBE 433
26.4 Recent Developments in Oxide MBE 435
 26.4.1 Adsorption-Controlled Growth 435
 26.4.2 Hybrid Molecular Beam Epitaxy 437
 26.4.3 Radical-Based Molecular Beam Epitaxy 440
26.5 Outlook 443
26.6 Summary 447
Acknowledgments 447
References 447
27. *In-situ* STM Study of MBE Growth Process
Shiro Tsukamoto

27.1 Introduction 453
27.2 The Advantages of *In-situ* STM Observation for Understanding Growth Mechanisms 454
27.3 *In-situ* STM Observation of InAs Growth on GaAs(001) by STMBE System 454
27.4 *In-situ* STM Observation of Various Growths and Treatments on GaAs Surfaces by STMBE System 456
27.5 Conclusion 460
References 460

28. Heterovalent Semiconductor Structures and their Device Applications
Yong-Hang Zhang

28.1 Introduction 463
28.2 MBE Growth of Heterovalent Structures 465
28.3 ZnTe and GaSb/ZnTe Heterovalent Distributed Bragg Reflector Structures Grown on GaSb 466
28.4 CdTe/MgCdTe Structure and Heterovalent Devices Grown on InSb Substrates 468
28.5 Single-Crystal CdTe/Mg_xCd_{1-x}Te Solar Cells 474
28.6 CdTe/InSb Two-Color Photodetectors 477
Acknowledgments 479
References 480

Index