Contents

Preface xvii

1 Genesis of Highly Reactive Metals 1

2 General Methods of Preparation and Properties 5
  2.1 General Methods for Preparation of Highly Reactive Metals 5
  2.2 Physical Characteristics of Highly Reactive Metal Powders 8
  2.3 Origin of the Metals’ High Reactivity 9
  References 10

3 Zinc 13
  3.1 General Methods for Preparation of Rieke Zinc 13
  3.2 Direct Oxidative Addition of Reactive Zinc to Functionalized Alkyl, Aryl, and Vinyl Halides 16
    Typical Preparation of 3-Fluorobenzylzinc Bromide 19
    Typical Preparation of 4-Cyanobutylzinc Bromide 20
    Typical Preparation of 4-Bromophenylzinc Iodide 20
    Typical Preparation of 3-Methyl-2-Pyridlyzinc Bromide 20
  3.3 Reactions of Organozinc Reagents with Acid Chlorides 20
    Typical Generation of Organozinc Halides from Organic Halides and Active Zinc and Their Copper-Mediated Coupling with Acid Chlorides 21
    Synthesis of 4-Methoxy-2’-Thiomethylbenzophenone Using Tetrakis(triphenylphosphine)palladium(0) as Catalyst 26
    Synthesis of Ethyl 7-(3,4-Difluorophenyl)-7-Oxoheptanoate Using Copper Iodide as Catalyst 26
    Cyanide-Based Rieke Zinc 27
  3.4 Reactions of Organozinc Reagents with α,β-Unsaturated Ketones 27
    Typical Copper-Mediated Conjugate Addition Reaction of Organozinc Halides to α,β-Unsaturated Ketones 30
  3.5 Reactions of Organozinc Reagents with Allylic and Alkynyl Halides 30
Typical Reaction of Organozinc Halides with Allylic Halides 31
Preparation of 2,3-Di(p-Cyanobenzyl)-1,3-Butadiene Reaction 34

3.6 Negishi Cross-Coupling of Vinyl and Aryl Organozinc Halides 34
Typical Procedure for the Reaction of RZnX with Aryl and Vinyl Halides 36
Preparation of Aryl Ketones via Ni-Catalyzed Negishi Coupling Reactions 36
Typical Reaction Procedure 42

3.7 Intramolecular Cyclizations and Conjugate Additions Mediated by Rieke Zinc 42

3.8 The Formation and Chemistry of Secondary and Tertiary Alkylzinc Halides 44

3.9 Electrophilic Amination of Organozinc Halides 50

3.10 Reformatsky and Reformatsky-Like Reagents and Their Chemistry 52
Synthesis of Reformatsky Reagent in THF 53
Synthesis of Reformatsky Reagent in Diethyl Ether 53

3.11 Configurationally Stable Organozinc Reagents and Intramolecular Insertion Reactions 54

3.12 Preparation of Tertiary Amides via Aryl, Heteroaryl, and Benzyl Organozinc Reagents 55

3.13 Preparation of 5-Substituted-2-Furaldehydes 61
Results and Discussion 63
General Procedure for Pd-Catalyzed Cross-Coupling Reactions 73

3.14 Preparation and Chemistry of 4-Coumarylzinc Bromide 73

3.15 Preparation and Cross-Coupling of 2-Pyridyl and 3-Pyridylzinc Bromides 77
Results and Discussion 80
Conclusions 102

Experimental 103
General 103
Preparation of 2-Pyridylzinc Bromide (P1) 103
Preparation of 3-Pyridylzinc Bromide (P7) 103
General Procedure for Copper-Free Coupling Reactions 104
Pd-Catalyzed Coupling Reaction with 4-Iodoanisole (10b) 104
Preparation of Bipyridines 104
Pd-Catalyzed Coupling Reaction with Haloanilines 104
Pd-Catalyzed Coupling Reactions with Halophenols 105
Copper-Catalyzed S_N2 Addition Reactions 105
Pd-Catalyzed Bimolecular Coupling Reactions 105
Contents

3.16 Preparation of Functionalized α-Chloromethyl Ketones 106
3.17 Rieke Zinc as a Reducing Agent for Common Organic Functional Groups 108
   The General Procedure for Dissolving Zinc Metal Reduction 111
3.18 Detailed Studies on the Mechanism of Organic Halide Oxidative Addition at a Zinc Metal Surface 111
   Results and Discussion 112
      Competitive Kinetics 112
      Alkyl Bromides 114
      Aryl, Vinyl, Benzyl, and Allyl Bromides 114
      Stereochemical Studies 117
      Radical Detection 119
      Mechanistic Considerations 120
      Two-Electron Mechanisms: S_N2 121
      Ate Complex 121
      S_N1 121
      One-Electron Mechanisms 122
      Outer-Sphere Electron Transfer 122
      Inner-Sphere Electron Transfer 122
      Linear-Free Energy Relationships (LFERs) 125
      Synthetic Applications 129
      Conclusions 130

3.19 Regiocontrolled Synthesis of Poly(3-Alkylthiophenes) Mediated by Rieke Zinc: A New Class of Plastic Semiconductors 133
   Results and Discussion 136
      Regiocontrolled Synthesis of Poly(3-Alkylthiophenes) Mediated by Rieke Zinc 136
      Mechanistic Implications of the Polymerizations 137
      Spectroscopic Studies and Other Characterization 139
      NMR Spectroscopy 139
      Conclusion 143
      General Preparation of Regioregular HT Poly(3-Alkylthiophenes) from 2,5-Dibromo-3-Alkylthiophenes: Preparation of Regioregular HT Poly(3-Hexylthiophene) (4b) 143
      General Preparation of Regiorandom Poly(3-Alkylthiophenes) from 2,5-Dibromo-3-Alkylthiophenes: Preparation of Regiorandom Poly(3-Hexylthiophene) (5b) 144

References 144

4 Magnesium 161
4.1 General Background and Mechanistic Details of Grignard Reaction 161
      General Methods of Metal Activation 164
4.2 General Methods for Preparation of Rieke Magnesium 165
4.3 Grignard Reagent Formation and Range of Reactivity of Magnesium 167
4.4 1,3-Diene-Magnesium Complexes and Their Chemistry 172
   Cyclizations of (1,4-Diphenyl-2-butene-1,4-diyl)magnesium with α,ω-Alkylene Dihalides 173
4.5 Regioselectivity of Reaction of Complexes with Electrophiles 173
4.6 Carbocyclization of (1,4-Diphenyl-2-butene-1,4-diyl) magnesium with Organic Dihalides 175
4.7 1,2-Dimethylenecycloalkane-Magnesium Reagents 175
4.8 Synthesis of Fused Carbocycles, β-γ-Unsaturated Ketones, and 3-Cyclopentenols from Conjugated Diene-Magnesium Reagents 178
4.9 Synthesis of Spiro-γ-Lactones and Spiro-δ-Lactones from 1,3-Diene-Magnesium Reagents 184
4.10 Synthesis of γ-Lactams from Conjugated Diene-Magnesium Reagents 190
4.11 Low-Temperature Grignard Chemistry 192
   Results and Discussion 194
   Typical Procedure for the Preparation of the Corresponding Grignard Reagents 196
4.12 Typical Procedures for Preparation of Active Magnesium and Typical Grignard Reactions as Well as 1,3-Diene Chemistry 197
   Anhydrous Magnesium Salts 197
   Preparation of Rieke Magnesium Using Potassium or Sodium as Reducing Agent 197
   Preparation of Rieke Magnesium Using Lithium and Naphthalene as an Electron Carrier 199
   Chemistry of (2-Butene-1,4-diyl)magnesium: Preparation of Activated Magnesium (Mg*) 200
   Typical Cyclization of (1,4-Diphenyl-2-butene-1,4-diyl) magnesium 200
   Typical Reaction of (2,3-Dimethyl-2-butene-1,4-diyl)magnesium 201
   Typical Stepwise Reaction of (2,3-Dimethyl-2-butene-1,4-diyl) magnesium 201
   Typical Regioselective Reaction of Unsymmetrical (2-Butene-1,4-diyl)magnesium 202
   Typical Reaction of Unsymmetrical (2-Butene-1,4-diyl)magnesium with SiCl₄ 202
   Typical Reaction with 1,2-Dimethylenecyclohexane 202
References 203
5 Copper

5.1 Background of Copper and Organocopper Chemistry 209
5.2 Development of Rieke Copper 210
5.3 Phosphine-Based Copper 211
5.4 Lithium 2-Thienylcyanocuprate-Based Copper 220
5.5 Copper Cyanide-Based Active Copper 224
5.6 Formal Copper Anion Preparation and Resulting Chemistry 228
5.7 Typical Experimental Details of Copper Chemistry 232
    Active Copper from CuI and K 232
    Reaction of K-Generated Copper with Pentafluorophenyl Iodide 233
    Preparation of Phosphine-Based Copper 234
    Phosphine-Based Copper Chemistry 234
        Typical Reaction with Acid Chlorides to Form Ketones 234
        Typical 1,4-Addition Reaction with 2-Cyclohexene-1-One 235
        Typical Procedure for Intermolecular Epoxide-Opening Reaction 235
        Typical Procedure for Intramolecular Epoxide-Opening Reaction 236
    Lithium 2-Thienylcyanocuprate-Based Copper and Chemistry 236
        Preparation of Thieryl-Based Activated Copper 236
        Reaction of Organocopper Reagent with Acid Chlorides 237
        Epoxide Opening of Organocopper Reagent with 1,2-Epoxybutane 237
    Copper Cyanide-Based Active Copper and Chemistry 237
        Preparation of Active Copper and Reaction with Organic Halides to Yield Organocopper Reagents 237
        Cross-Coupling of Benzoyl Chloride with Organocopper Reagents Derived from CuCN-2LiBr-Based Active Copper 237
        Conjugate Additions with Organocopper Reagents Derived from CuCN-2LiBr-Based Active Copper 238
        Reaction of Allyl Organocopper Reagents Derived from CuCN-2LiBr with Benzoyl Chloride 238
    Preparation of Copper Anions and Some Resulting Chemistry 238
        Preparation of Cu(-1)Li(+). 238

References 239

6 Indium 241

6.1 Background and Synthesis of Rieke Indium 241
6.2 Preparation of Organoindium Compounds 241
The Direct Synthesis of Diphenylindium Iodide and Ditolyindium Iodide from Activated Indium and Aryl Iodides 243
Results and Discussion 244

6.3 Preparation and Reactions of Indium Reformatsky Reagents 246
6.4 Experimental Details for Preparation and Reactions of Activated Indium 250
Preparation of Active Indium and Reaction with Alkyl Iodides 250
Reaction of Active Indium with Iodine 250
Triphenylindium 251
Tritolylindium 251
Trimethylindium 251
The Reaction of Activated Indium with Iodobenzene 252
The Reaction of Activated Indium with Iodotoluene 252
The Reaction of Triphenylindium with Iodine 252
Materials 252
Indium Reformatsky Reaction 253

References 253

7 Nickel 255
7.1 Preparation of Rieke Nickel, Characterization of Active Nickel Powder, and Some Chemistry 255
Preparation of Rieke Nickel Slurries 255
Surface Analysis 256
Discussion 257
Reactions of Slurries 258
Summary 259
Experimental Procedures 259
Preparation of a Typical Nickel Slurry 259
Preparation of Ni(C₆F₅)₂[P(C₂H₅)₃]₂ 260
Preparation of Ni(C₆F₅)₂(C₅H₅N)₂ 260
Preparation of Ni(C₆F₅)₂[(C₆H₅)₂ PH]₂·C₆H₅CH₃ 260
7.2 Preparation of 3-Aryl-2-hydroxy-1-propane by Nickel-Mediated Addition of Benzyl Halides to 1,2-Diketones 261
2-Hydroxy-1,2,3-triphenyl-1-propanone (4a: Ar = R¹ = R² = C₆H₅): Typical Procedure 265
7.3 Preparation of 3-Arylpropanenitriles by Nickel-Mediated Reaction of Benzyl Halides with Haloacetonitriles 265
Preparation of Metallic Nickel 266
Typical Procedure for 3-Phenylpropanenitrile (3a) 267
7.4 Reformatsky-Type Additions of Haloacetonitriles to Aldehydes Mediated by Metallic Nickel 267
7.5 Preparation of Symmetrical 1,3-Diarylpropan-2-ones from Benzyl Halides and Alkyl Oxalyl Chlorides 269
7.6 Nickel-Mediated Coupling of Benzyl Halides and Acyl Halides to Yield Benzyl Ketones 273

7.7 Nickel-Assisted Room Temperature Generation and Diels–Alder Chemistry of o-Xylylene Intermediates 275
   Results and Discussion 277
   Typical Preparation of Activated Nickel 282
   Reaction of α,α’-Dibromo-o-xylene with Diethyl Fumarate in the Presence of Metallic Nickel 284

7.8 Active Nickel-Mediated Dehalogenative Coupling of Aryl and Benzyl Halides 284
   Results and Discussion 285
   Results and Discussion 289
   Preparation of Activated Nickel Powder 295
   Reaction of 4-Iodomethoxybenzene with Activated Nickel Powder 296
   Trapping of Bis(pentafluorophenyl)nickel(II) Species with Triphenylphosphine 296
   Trapping of (Pentafluorophenyl)nickel(II) Iodide Species with Triethylphosphine 297
   Preparation of Metallic Nickel Powders and Their Reaction with 4-Nitrobenzyl Chloride 297

References 298

8 Manganese 305
8.1 Preparation of Rieke Manganese 305
8.2 Direct Formation of Aryl-, Alkyl-, and Vinylmanganese Halides via Oxidative Addition of the Active Metal to the Corresponding Halide 306
8.3 Direct Formation of Organomanganese Tosylates and Mesylates and Some Cross-Coupling Reactions 316
8.4 Benzyl Manganese Halides, Sulfonates, and Phosphates: Preparation, Coupling Reactions, and Applications in New Reactions 320
   Introduction 320
   Results and Discussion 321
   Preparation and Coupling Reactions of Benzyl Manganese Halides 321
   Preparation and Coupling Reactions of Benzyl Manganese Sulfonates and Phosphates 322
   Homocoupling Reactions of Functionalized Benzyl Manganese Reagents 332
   Palladium-Catalyzed Cross-Coupling Reactions of Benzyl Manganese Reagents 335
   Limitations of This Approach 335
Experimental 336
Preparation of Highly Active Manganese (Mn*) 336
Typical Preparation of Benzyl Manganese Halides and Their Coupling Reactions with Benzoyl Chlorides to Give Ketones (2a–2l) 337
Typical Procedure for the Cross-Coupling Reactions of Benzyl Manganese Mesylates 337
Preparation of Alcohols from the Reactions of Benzyl Manganese Halides with Aldehydes and Ketones (3a–3i) 337
Typical Preparation of Benzyl Manganese Phosphates and Their Cross-Coupling Reactions 338
Homocoupling Reactions of Functionalized Benzyl Halides 338
Typical Procedure for the Coupling Reaction of (1f) with Aldehydes and Acid Chlorides (13a–13d, 14–18) 338
Typical Preparation of Functionalized Benzyl Manganese Halides and Their Cross-Coupling Reactions with Aryl Iodides under a Palladium Catalyst 339
8.5 Preparation and Coupling Reactions of Thiénylmanganese Halides 339
8.6 Synthesis of β-Hydroxy Esters Using Active Manganese 343
8.7 Reductive Coupling of Carbonyl-Containing Compounds and Imines Using Reactive Manganese 347
Results and Discussion 351
Reductive Coupling Reactions of Aryl Aldehydes 351
Reductive Coupling Reactions of Aryl Ketones 353
Reductive Coupling of Aldimines 354
Conclusions 354
Typical Experimental Procedures 354
Preparation of Highly Reactive Manganese (Mn*) 354
A Typical Procedure for the Preparation of 1,2-Diols (2a–2h) from the Reactions of Aryl Aldehydes with Mn* 355
Typical Procedure for the Preparation of 1,2-Diols from the Reaction of Aryl Ketones with Mn* 355
Reductive Coupling Reaction of Aldimines (13 and 15) into Vicinal Diamines (14 and 16) 355
8.8 Preparation of Heteroarylmanganese Reagents and Their Cross-Coupling Chemistry 355
References 360

9 Calcium 371
9.1 Preparation of Rieke Calcium 371
9.2 Oxidative Addition Reactions of Rieke Calcium with Organic Halides and Some Subsequent Reactions 372
Grignard-Type Reactions with Highly Reactive Calcium 372
9.3 Preparation and Reaction of Calcium Cuprate Reagents 373
9.4 Preparation and Reactions of Calcium Metallocycles 377
   Typical Procedure for the Preparation of Active Calcium 380
   Typical Grignard-Type Reaction 380
   Typical Ketone Formation Reaction 380
   Typical Conjugate 1,4-Addition Reaction 381
   Typical Reaction of the Calcium Complex of 1,3-Diene 381
9.5 Synthesis of Polyphenylcarbynes Using Highly Reactive Calcium, Barium, and Strontium: A Precursor for Diamond-like Carbon 382
9.6 Chemical Modification of Halogenated Polystyrenes Using Rieke Calcium or Rieke Copper 386
References 388

10 Barium 391
10.1 Preparation of Rieke Barium 391
10.2 Oxidative Addition of Rieke Barium to Allylic Halides: Preparation of Stereochemically Homogeneous Allylic Barium Reagents 392
References 394

11 Iron 395
11.1 Preparation of Highly Reactive Iron and Some Oxidative Addition Chemistry 395
   Preparation of a Typical Iron Slurry 396
   Preparation of Fe(C₆F₅)₂(CO)₂(C₄H₁₀O₂)₂ 396
References 397

12 Palladium and Platinum 399
12.1 Preparation of Highly Reactive Palladium and Platinum and Some Oxidative Addition Chemistry 399
   Preparation of Slurries 401
   Palladium Compounds 401
   Platinum Compounds 402
   Summary 402
   Preparation of trans-[P(C₂H₅)₃]₂Pd(C₆H₅)I 403
   Preparation of trans-[P(C₂H₅)₃]₂Pd(C₆H₅)Br 403
   Preparation of trans-[P(C₂H₅)₃]₂Pd(C₆H₅)CN 404
   Preparation of trans-[P(C₂H₅)₃]₂Pt(C₆H₅)I 404
   Preparation of trans-[P(C₂H₅)₃]₂Pt(C₆H₅)Br 405
References 405

13 Highly Reactive Uranium and Thorium 407
13.1 Two Methods for Preparation of Highly Reactive Uranium and Thorium: Use of a Novel Reducing Agent Naphthalene Dianion 407
   Results and Discussion 409
Conclusion 417
Preparation of Active Uranium in DME (1) 418
Reaction of (1) with 1,3-Butadiene 418
Preparation of \([\text{TMEDA}]\text{Li}_2[\text{Nap}]\) (2) 418
Preparation of Active Uranium in Hydrocarbon Solvents (3) 419
Reaction of (3) with Ketones 419
Reaction of (3) with Pinacols 419
Preparation of \((p-\text{CH}_3\text{C}_6\text{H}_4)_2\text{COHCOH}(p-\text{CH}_3\text{C}_6\text{H}_4)_2\) [94] 420

References 420

14 Aluminum 425
14.1 Preparation of Highly Reactive Aluminum and Reaction with Aryl Halides 425
Experimental 426

References 427

15 Cobalt 429
15.1 Two Methods for Preparing Rieke Cobalt: Reaction with CO and Also Fischer–Tropsch Chemistry 429
Preparation of Cobalt Powder (1) 431
Preparation of Cobalt Powder (2) 431
Preparation of \(\text{Co}_2(\text{CO})_8\) from Activated Cobalt 432
  Method 1 432
  Method 2 432
Reaction of Co with Synthesis Gas 433
  Method 1 433
  Method 2 434
Hydrolysis of Active Cobalt 434
Reaction of Dry Cobalt Powders with CO 436
Reaction of Cobalt with Aromatic Nitro Compounds 437
  Nitrobenzene 437
  1-Iodo-4-Nitrobenzene 438
  1,2-Dinitrobenzene 439
Reaction of Cobalt with \(\text{C}_4\text{F}_5\text{I}\): Preparation of \((\text{C}_4\text{F}_5)_2\text{Co}\cdot 2\text{PET}_3\) 439
Reaction with Benzyl Bromide 439
Reaction with Phenyl Halides: Phenyl Iodide 440
  Method 1 440
  Method 2 440
  Method 3 441
Preparation of Tetraphenylethylene 440
  Method 1 440
  Method 2 440
  Method 3 441
Reaction of Cobalt with Diodomethane 441

References 441
16 Chromium 443
  16.1 Preparation of Highly Reactive Chromium Metal and Its Reaction with CO to Yield Cr(CO)₆ 443
    Experimental 445
      Preparation of Cr(CO)₆ from Chromium Powder 445
      Preparation of Cr(CO)₆ by Reduction with Activated Magnesium 445
      Extraction of Chromium Powder 445
  References 446

Index 447