Contents

Preface
xxv

About the Author
xxvii

About the Website
xxix

PART ONE

Introduction to Modelling, Core Themes and Best Practices
1

CHAPTER 1

Models of Models
3

- Introduction
3
- Context and Objectives
3
- The Stages of Modelling
3
- Backward Thinking and Forward Calculation Processes
4

CHAPTER 2

Using Models in Decision Support
7

- Introduction
7
- Benefits of Using Models
7
 - Providing Numerical Information
7
 - Capturing Influencing Factors and Relationships
7
 - Generating Insight and Forming Hypotheses
8
 - Decision Levers, Scenarios, Uncertainties, Optimisation, Risk Mitigation and Project Design
8
 - Improving Working Processes, Enhanced Communications and Precise Data Requirements
9
- Challenges in Using Models
9
 - The Nature of Model Error
9
 - Inherent Ambiguity and Circularity of Reasoning
10
 - Inconsistent Scope or Alignment of Decision and Model
10
 - The Presence on Biases, Imperfect Testing, False Positives and Negatives
11
 - Balancing Intuition with Rationality
11
 - Lack of Data or Insufficient Understanding of a Situation
12
- Overcoming Challenges: Awareness, Actions and Best Practices
13
CHAPTER 3
Core Competencies and Best Practices: Meta-themes

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>15</td>
</tr>
<tr>
<td>Key Themes</td>
<td>15</td>
</tr>
<tr>
<td>Decision-support Role, Objectives, Outputs and Communication</td>
<td>16</td>
</tr>
<tr>
<td>Application Knowledge and Understanding</td>
<td>17</td>
</tr>
<tr>
<td>Skills with Implementation Platform</td>
<td>17</td>
</tr>
<tr>
<td>Defining Sensitivity and Flexibility Requirements</td>
<td>18</td>
</tr>
<tr>
<td>Designing Appropriate Layout, Input Data Structures and Flow</td>
<td>20</td>
</tr>
<tr>
<td>Ensuring Transparency and Creating a User-friendly Model</td>
<td>20</td>
</tr>
<tr>
<td>Integrated Problem-solving Skills</td>
<td>21</td>
</tr>
</tbody>
</table>

PART TWO
Model Design and Planning

CHAPTER 4
Defining Sensitivity and Flexibility Requirements

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>25</td>
</tr>
<tr>
<td>Key Issues for Consideration</td>
<td>25</td>
</tr>
<tr>
<td>Creating a Focus on Objectives and Their Implications</td>
<td>26</td>
</tr>
<tr>
<td>Sensitivity Concepts in the Backward Thought and Forward Calculation Processes</td>
<td>26</td>
</tr>
<tr>
<td>Time Granularity</td>
<td>30</td>
</tr>
<tr>
<td>Level of Detail on Input Variables</td>
<td>30</td>
</tr>
<tr>
<td>Sensitising Absolute Values or Variations from Base Cases</td>
<td>31</td>
</tr>
<tr>
<td>Scenarios Versus Sensitivities</td>
<td>32</td>
</tr>
<tr>
<td>Uncertain Versus Decision Variables</td>
<td>33</td>
</tr>
<tr>
<td>Increasing Model Validity Using Formulae</td>
<td>34</td>
</tr>
</tbody>
</table>

CHAPTER 5
Database Versus Formulae-driven Approaches

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>37</td>
</tr>
<tr>
<td>Key Issues for Consideration</td>
<td>37</td>
</tr>
<tr>
<td>Separating the Data, Analysis and Presentation (Reporting)</td>
<td>37</td>
</tr>
<tr>
<td>Layers</td>
<td>37</td>
</tr>
<tr>
<td>The Nature of Changes to Data Sets and Structures</td>
<td>39</td>
</tr>
<tr>
<td>Focus on Data or Formulae?</td>
<td>40</td>
</tr>
<tr>
<td>Practical Example</td>
<td>42</td>
</tr>
</tbody>
</table>

CHAPTER 6
Designing the Workbook Structure

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Introduction</td>
<td>47</td>
</tr>
<tr>
<td>Designing Workbook Models with Multiple Worksheets</td>
<td>47</td>
</tr>
<tr>
<td>Linked Workbooks</td>
<td>47</td>
</tr>
<tr>
<td>Multiple Worksheets: Advantages and Disadvantages</td>
<td>48</td>
</tr>
</tbody>
</table>
Generic Best Practice Structures 49
The Role of Multiple Worksheets in Best Practice Structures 49
Type I: Single Worksheet Models 50
Type II: Single Main Formulae Worksheet, and Several Data
Worksheets 50
Type III: Single Main Formulae Worksheet, and Several Data
and Local Analysis Worksheets 51
Further Comparative Comments 51
Using Information from Multiple Worksheets: Choice (Exclusion)
and Consolidation (Inclusion) Processes 52
Multi-sheet or “Three Dimensional” Formulae 53
Using Excel’s Data/Consolidation Functionality 54
Consolidating from Several Sheets into a Database 55
Using a Macro 55
User-defined Functions 56

PART THREE
Model Building, Testing and Auditing 57

CHAPTER 7
Creating Transparency: Formula Structure, Flow and Format 59
Introduction 59
Approaches to Identifying the Drivers of Complexity 59
Taking the Place of a Model Auditor 59
Example: Creating Complexity in a Simple Model 60
Core Elements of Transparent Models 61
Optimising Audit Paths 62
Creating Short Audit Paths Using Modular Approaches 63
Creating Short Audit Paths Using Formulae Structure
and Placement 67
Optimising Logical Flow and the Direction of the Audit Paths 68
Identifying Inputs, Calculations and Outputs: Structure
and Formatting 69
The Role of Formatting 70
Colour-coding of Inputs and Outputs 70
Basic Formatting Operations 73
Conditional Formatting 73
Custom Formatting 75
Creating Documentation, Comments and Hyperlinks 76

CHAPTER 8
Building Robust and Transparent Formulae 79
Introduction 79
General Causes of Mistakes 79
Insufficient Use of General Best Practices Relating to Flow,
Formatting, Audit Paths 79
Insufficient Consideration Given to Auditability and Other Potential Users 79
Overconfidence, Lack of Checking and Time Constraints 80
Sub-optimal Choice of Functions 80
Inappropriate Use or Poor Implementation of Named Ranges, Circular References or Macros 80
Examples of Common Mistakes 80
 Referring to Incorrect Ranges or To Blank Cells 80
 Non-transparent Assumptions, Hidden Inputs and Labels 82
 Overlooking the Nature of Some Excel Function Values 82
 Using Formulae Which are Inconsistent Within a Range 83
 Overriding Unforeseen Errors with IFERROR 84
 Models Which are Correct in Base Case but Not in Others 85
 Incorrect Modifications when Working with Poor Models 85
The Use of Named Ranges 85
 Mechanics and Implementation 86
 Disadvantages of Using Named Ranges 86
 Advantages and Key Uses of Named Ranges 90
Approaches to Building Formulae, to Testing, Error Detection and Management 91
 Checking Behaviour and Detecting Errors Using Sensitivity Testing 91
 Using Individual Logic Steps 93
 Building and Splitting Compound Formulae 94
 Using Absolute Cell Referencing Only Where Necessary 96
 Limiting Repeated or Unused Logic 96
 Using Breaks to Test Calculation Paths 97
 Using Excel Error Checking Rules 97
 Building Error-checking Formulae 98
 Handling Calculation Errors Robustly 100
 Restricting Input Values Using Data Validation 100
 Protecting Ranges 101
 Dealing with Structural Limitations: Formulae and Documentation 102

CHAPTER 9
Choosing Excel Functions for Transparency, Flexibility and Efficiency 105
Introduction 105
Key Considerations 105
 Direct Arithmetic or Functions, and Individual Cells or Ranges? 105
 IF Versus MIN/MAX 107
 Embedded IF Statements 109
 Short Forms of Functions 111
 Text Versus Numerical Fields 112
 SUMIFS with One Criterion 112
 Including Only Specific Items in a Summation 113
Processes, Tools and Techniques 146
 Avoiding Unintentional Changes 146
 Developing a General Overview and Then Understanding the Details 147
 Testing and Checking the Formulae 151
 Using a Watch Window and Other Ways to Track Values 151

PART FOUR

Sensitivity and Scenario Analysis, Simulation and Optimisation 153

CHAPTER 12
 Sensitivity and Scenario Analysis: Core Techniques 155
 Introduction 155
 Overview of Sensitivity-related Techniques 155
 DataTables 156
 Overview 156
 Implementation 157
 Limitations and Tips 157
 Practical Applications 160
 Example: Sensitivity of Net Present Value to Growth Rates 160
 Example: Implementing Scenario Analysis 160

CHAPTER 13
 Using GoalSeek and Solver 163
 Introduction 163
 Overview of GoalSeek and Solver 163
 Links to Sensitivity Analysis 163
 Tips, Tricks and Limitations 163
 Practical Applications 164
 Example: Breakeven Analysis of a Business 165
 Example: Threshold Investment Amounts 166
 Example: Implied Volatility of an Option 167
 Example: Minimising Capital Gains Tax Liability 167
 Example: Non-linear Curve Fitting 169

CHAPTER 14
 Using VBA Macros to Conduct Sensitivity and Scenario Analyses 171
 Introduction 171
 Practical Applications 172
 Example: Running Sensitivity Analysis Using a Macro 172
 Example: Running Scenarios Using a Macro 173
 Example: Using a Macro to Run Breakeven Analysis with GoalSeek 173
 Example: Using Solver Within a Macro to Create a Frontier of Optimum Solutions 175
CHAPTER 15
Introduction to Simulation and Optimisation

1. **Introduction**
 177
2. **The Links Between Sensitivity and Scenario Analysis, Simulation and Optimisation**
 177
 1. The Combinatorial Effects of Multiple Possible Input Values
 177
 2. Controllable Versus Non-controllable: Choice Versus Uncertainty of Input Values
 178
3. **Practical Example: A Portfolio of Projects**
 179
 1. Description
 179
 2. Optimisation Context
 180
 3. Risk or Uncertainty Context Using Simulation
 180
4. **Further Aspects of Optimisation Modelling**
 182
 1. Structural Choices
 182
 2. Uncertainty
 183
 3. Integrated Approaches to Optimisation
 183
 4. Modelling Issues and Tools
 184

CHAPTER 16
The Modelling of Risk and Uncertainty, and Using Simulation

1. **Introduction**
 187
2. **The Meaning, Origins and Uses of Monte Carlo Simulation**
 187
 1. Definition and Origin
 187
 2. Limitations of Sensitivity and Scenario Approaches
 188
 3. Key Benefits of Uncertainty and Risk Modelling and the Questions Addressable
 189
 4. The Nature of Model Outputs
 190
 5. The Applicability of Simulation Methods
 190
3. **Key Process and Modelling Steps in Risk Modelling**
 191
 1. Risk Identification
 191
 2. Risk Mapping and the Role of the Distribution of Input Values
 191
 3. The Modelling Context and the Meaning of Input Distributions
 192
 4. The Effect of Dependencies Between Inputs
 192
 5. Random Numbers and the Required Number of Recalculations or Iterations
 193
4. **Using Excel and VBA to Implement Risk and Simulation Models**
 194
 1. Generation of Random Samples
 194
 2. Repeated Recalculations and Results Storage
 195
 3. Example: Cost Estimation with Uncertainty and Event Risks Using Excel/VBA
 196
5. **Using Add-ins to Implement Risk and Simulation Models**
 196
 1. Benefits of Add-ins
 196
 2. Example: Cost Estimation with Uncertainty and Event Risks Using @RISK
 197
PART FIVE

Excel Functions and Functionality

CHAPTER 17
Core Arithmetic and Logical Functions

Introduction
Practical Applications
Example: IF, AND, OR, NOT
Example: MIN, MAX, MINA, MAXA
Example: MINIFS and MAXIFS
Example: COUNT, COUNTA, COUNTIF and Similar Functions
Example: SUM, AVERAGE, AVERAGEA
Example: SUMIF, SUMIFS, AVERAGEIF, AVERAGEIFS
Example: PRODUCT
Example: SUMPRODUCT
Example: SUBTOTAL
Example: AGGREGATE
Example: IFERROR
Example: SWITCH

CHAPTER 18
Array Functions and Formulae

Introduction
Functions and Formulae: Definitions
Implementation
Advantages and Disadvantages
Practical Applications: Array Functions
Example: Capex and Depreciation Schedules Using TRANSPOSE
Example: Cost Allocation Using SUMPRODUCT with TRANSPOSE
Example: Cost Allocation Using Matrix Multiplication Using MMULT
Example: Activity-based Costing and Resource Forecasting Using Multiple Driving Factors
Example: Summing Powers of Integers from 1 Onwards
Practical Applications: Array Formulae
Example: Finding First Positive Item in a List
Example: Find a Conditional Maximum
Example: Find a Conditional Maximum Using AGGREGATE as an Array Formula

CHAPTER 19
Mathematical Functions

Introduction
Practical Applications
Example: EXP and LN
Example: ABS and SIGN
Example: INT, ROUNDDOWN, ROUNdup, ROUND and TRUNC 233
Example: MROUND, CEILING.MATH and FLOOR.MATH 235
Example: MOD 236
Example: SQRT and POWER 236
Example: FACT and COMBIN 237
Example: RAND() 238
Example: SINE, ASIN, DEGREES and PI() 239
Example: BASE and DECIMAL 241

CHAPTER 20
Financial Functions 243
Introduction 243
Practical Applications 243
Example: FVSCHEDULE 244
Example: FV and PV 244
Example: PMT, IPMT, PPMT, CUMIPMT, CUMPRINC and NPER 246
Example: NPV and IRR for a Buy or Lease Decision 248
Example: SLN, DDB and VDB 250
Example: YIELD 252
Example: Duration of Cash Flows 252
Example: DURATION and MDURATION 253
Example: PDURATION and RRI 254
Other Financial Functions 255

CHAPTER 21
Statistical Functions 257
Introduction 257
Practical Applications: Position, Ranking and Central Values 258
Example: Calculating Mean and Mode 258
Example: Dynamic Sorting of Data Using LARGE 260
Example: RANK.EQ 261
Example: RANK.AVG 262
Example: Calculating Percentiles 262
Example: PERCENTRANK-type Functions 263
Practical Applications: Spread and Shape 264
Example: Generating a Histogram of Returns Using FREQUENCY 265
Example: Variance, Standard Deviation and Volatility 267
Example: Skewness and Kurtosis 271
Example: One-sided Volatility (Semi-deviation) 272
Practical Applications: Co-relationships and Dependencies 273
Example: Scatter Plots (X–Y Charts) and Measuring Correlation 274
Example: More on Correlation Coefficients and Rank Correlation 275
Example: Measuring Co-variances 277
Example: Covariance Matrices, Portfolio Volatility and Volatility Time Scaling 277

Practical Applications: Probability Distributions 280
Example: Likelihood of a Given Number of Successes of an Oil Exploration Process 282
Example: Frequency of Outcomes Within One or Two Standard Deviations 283
Example: Creating Random Samples from Probability Distributions 283
Example: User-defined Inverse Functions for Random Sampling 284
Example: Values Associated with Probabilities for a Binomial Process 285
Example: Confidence Intervals for the Mean Using Student (T) and Normal Distributions 285
Example: the CONFIDENCE.T and CONFIDENCE.NORM Functions 287
Example: Confidence Intervals for the Standard Deviation Using Chi-squared 289
Example: Confidence Interval for the Slope of Regression Line (or Beta) 289

Practical Applications: More on Regression Analysis and Forecasting 291
Example: Using LINEST to Calculate Confidence Intervals for the Slope (or Beta) 291
Example: Using LINEST to Perform Multiple Regression 292
Example: Using LOGEST to Find Exponential Fits 293
Example: Using TREND and GROWTH to Forecast Linear and Exponential Trends 294
Example: Linear Forecasting Using FORECAST.LINEAR 295
Example: Forecasting Using the FORECAST.ETS Set of Functions 296

CHAPTER 22

Information Functions 299

Introduction 299
Practical Applications 300
Example: In-formula Comments Using ISTEXT, ISNUMBER or N 300
Example: Building a Forecast Model that Can Be Updated with Actual Reported Figures 300
Example: Detecting Consistency of Data in a Database 301
Example: Consistent use of “N/A” in Models 301
Example: Applications of the INFO and CELL Functions: An Overview 303
Example: Creating Updating Labels that Refer to Data or Formulae 303
Example: Showing the User Which Recalculation Mode the File Is On 305
Example: Finding the Excel Version Used and Creating Backward Compatible Formulae 305
Example: File Location and Structural Information Using CELL, INFO, SHEET and SHEETS 306

CHAPTER 23
Date and Time Functions 307
Introduction 307
Practical Applications 308
Example: Task Durations, Resource and Cost Estimation 308
Example: Keeping Track of Bookings, Reservations or Other Activities 308
Example: Creating Precise Time Axes 309
Example: Calculating the Year and Month of a Date 309
Example: Calculating the Quarter in Which a Date Occurs 310
Example: Creating Time-based Reports and Models from Data Sets 311
Example: Finding Out on What Day of the Week You Were Born 311
Example: Calculating the Date of the Last Friday of Every Month 311
Example: the DATEDIF Function and Completed Time Periods 312

CHAPTER 24
Text Functions and Functionality 313
Introduction 313
Practical Applications 314
Example: Joining Text Using CONCAT and TEXTJOIN 314
Example: Splitting Data Using the Text-to-columns Wizard 315
Example: Converting Numerical Text to Numbers 316
Example: Dynamic Splitting Text into Components I 316
Example: Dynamic Splitting Text into Components II 317
Example: Comparing LEFT, RIGHT, MID and LEN 317
Example: Dynamic Splitting Text into Components III 318
Example: Comparing FIND and SEARCH 319
Example: the UPPER and LOWER Functions 319
Example: the PROPER Function 319
Example: the EXACT Function 320
Example: Comparing REPLACE with SUBSTITUTE 320
Example: the REPT Function 320
Example: the CLEAN and TRIM Functions 321
Example: Updating Model Labels and Graph Titles 322
Example: Creating Unique Identifiers or Keys for Data Matching 323
CHAPTER 25
Lookup and Reference Functions

Introduction 325
Practical Applications: Basic Referencing Processes 326
 Example: the ROW and COLUMN Functions 326
 Example: the ROWS and COLUMNS Functions 327
 Example: Use of the ADDRESS Function and the
 Comparison with CELL 327
Practical Applications: Further Referencing Processes 328
 Example: Creating Scenarios Using INDEX, OFFSET
 or CHOOSE 328
 Example: Charts that Can Use Multiple or Flexible
 Data Sources 330
 Example: Reversing and Transposing Data Using INDEX
 or OFFSET 331
 Example: Shifting Cash Flows or Other Items over Time 334
 Example: Depreciation Schedules with Triangle Calculations 334
Practical Applications: Combining Matching and Reference
 Processes 335
 Example: Finding the Period in Which a Condition is
 Met Using MATCH 335
 Example: Finding Non-contiguous Scenario Data
 Using Matching Keys 336
 Example: Creating and Finding Matching Text Fields or Keys 336
 Example: Combining INDEX with MATCH 337
 Example: Comparing INDEX-MATCH with V- and
 HLOOKUP 338
 Example: Comparing INDEX-MATCH with LOOKUP 343
 Example: Finding the Closest Matching Value Using Array
 and Other Function Combinations 344
Practical Applications: More on the OFFSET Function
 and Dynamic Ranges 345
 Example: Flexible Ranges Using OFFSET (I) 345
 Example: Flexible Ranges Using OFFSET (II) 346
 Example: Flexible Ranges Using OFFSET (III) 347
 Example: Flexible Ranges Using OFFSET (IV) 347
Practical Applications: The INDIRECT Function and
 Flexible Workbook or Data Structures 349
 Example: Simple Examples of Using INDIRECT to Refer
 to Cells and Other Worksheets 349
 Example: Incorporating Data from Multiple Worksheet
 Models and Flexible Scenario Modelling 351
 Example: Other Uses of INDIRECT – Cascading
 Drop-down Lists 352
Practical Examples: Use of Hyperlinks to Navigate a
 Model, and Other Links to Data Sets 352
 Example: Model Navigation Using Named Ranges
 and Hyperlinks 353
CHAPTER 26
Filters, Database Functions and PivotTables 355
Introduction 355
Issues Common to Working with Sets of Data 356
 Cleaning and Manipulating Source Data 356
 Static or Dynamic Queries 356
 Creation of New Fields or Complex Filters? 357
Excel Databases and Tables 357
Automation Using Macros 359
Practical Applications: Filters 359
 Example: Applying Filters and Inspecting Data for Errors or Possible Corrections 359
 Example: Identification of Unique Items and Unique Combinations 362
 Example: Using Filters to Remove Blanks or Other Specified Items 363
 Example: Extraction of Data Using Filters 365
 Example: Adding Criteria Calculations to the Data Set 365
 Example: Use of Tables 366
 Example: Extraction of Data Using Advanced Filters 369
Practical Applications: Database Functions 370
 Example: Calculating Conditional Sums and Maxima Using DSUM and DMAX 370
 Example: Implementing a Between Query 371
 Example: Implementing Multiple Queries 371
Practical Applications: PivotTables 373
 Example: Exploring Summary Values of Data Sets 373
 Example: Exploring Underlying Elements of the Summary Items 376
 Example: Adding Slicers 376
 Example: Timeline Slicers 378
 Example: Generating Reports Which Ignore Errors or Other Specified Items 380
 Example: Using the GETPIVOTDATA Functions 380
 Example: Creating PivotCharts 382
 Example: Using the Excel Data Model to Link Tables 383

CHAPTER 27
Selected Short-cuts and Other Features 387
Introduction 387
Key Short-cuts and Their Uses 387
 Entering and Modifying Data and Formulae 388
 Formatting 390
 Auditing, Navigation and Other Items 391
Excel KeyTips 393
Other Useful Excel Tools and Features 393
 Sparklines 393
 The Camera Tool 393
PART SIX

Foundations of VBA and Macros 395

CHAPTER 28

Getting Started 397

Introduction 397
Main Uses of VBA 397
 Task Automation 398
 Creating User-defined Functions 398
 Detecting and Reacting to Model Events 398
 Enhancing or Managing the User Interface 399
Application Development 399
Core Operations 399
 Adding the Developer Tab to Excel’s Toolbar 399
 The Visual Basic Editor 399
 Recording Macros 401
 Typical Adaptations Required When Using Recorded Code 402
Writing Code 403
Running Code 404
Debugging Techniques 405
Simple Examples 406
 Example: Using Excel Cell Values in VBA 406
 Example: Using Named Excel Ranges for Robustness and Flexibility 407
 Example: Placing a Value from VBA Code into an Excel Range 408
 Example: Replacing Copy/Paste with an Assignment 409
 Example: A Simple User-defined Function 409
 Example: Displaying a Message when a Workbook is Opened 410

CHAPTER 29

Working with Objects and Ranges 413

Introduction 413
Overview of the Object Model 413
 Objects, Properties, Methods and Events 413
 Object Hierarchies and Collections 414
Using Set...=. . . 415
Using the With...End With Construct 415
Finding Alternatives to the Selection or Activation of Ranges and Objects 416
Working with Range Objects: Some Key Elements 416
 Basic Syntax Possibilities and Using Named Ranges 416
 Named Ranges and Named Variables 417
The CurrentRegion Property 417
The xlCellTypeLastCell Property 418
Worksheet Names and Code Names 419
The UsedRange Property 419
Contents

The Cells Property 420
The Offset Property 421
The Union Method 421
InputBox and MsgBox 421
Application.InputBox 422
Defining Multi-cell Ranges 422
Using Target to React to Worksheet Events 422
Using Target to React to Workbook Events 423

CHAPTER 30

Controlling Execution 425
Introduction 425
Core Topics in Overview 425
Input Boxes and Message Boxes 425
For. . .Next Loops 425
For Each. . .In. . .Next 426
If. . .Then 427
Select Case. . .End Select 427
GoTo 428
Do. . .While/Until. . .Loop 428
Calculation and Calculate 429
Screen Updating 432
Measuring Run Time 432
Displaying Alerts 433
Accessing Excel Worksheet Functions 433
 Executing Procedures Within Procedures 434
Accessing Add-ins 435
Practical Applications 435
Example: Numerical Looping 435
Example: Listing the Names of All Worksheets in a Workbook 436
Example: Adding a New Worksheet to a Workbook 437
Example: Deleting Specific Worksheets from a Workbook 437
Example: Refreshing PivotTables, Modifying Charts and Working Through Other Object Collections 438

CHAPTER 31

Writing Robust Code 441
Introduction 441
Key Principles 441
From the Specific to the General 441
Adapting Recorded Code for Robustness 442
Event Code 442
Comments and Indented Text 442
Modular Code 443
Passing Arguments ByVal or ByRef 443
Full Referencing 445
Using Worksheet Code Numbers 447
Assignment Statements, and Manipulating Objects Rather Than Selecting or Activating Them 447
Working with Ranges Instead of Individual Cells 448
Data Types and Variable Declaration 448
Choice of Names 449
Working with Arrays in VBA 450
Understanding Error Codes: An Introduction 451
Further Approaches to Testing, Debugging and Error-handling 452
General Techniques 452
Debugging Functions 453
Implementing Error-handling Procedures 454

CHAPTER 32
Manipulation and Analysis of Data Sets with VBA 455
Introduction 455
Practical Applications 455
Example: Working Out the Size of a Range 455
Example: Defining the Data Set at Run Time Based on User Input 457
Example: Working Out the Position of a Data Set Automatically 457
Example: Reversing Rows (or Columns) of Data I: Placement in a New Range 459
Example: Reversing Rows (or Columns) of Data II: In Place 460
Example: Automation of Other Data-related Excel Procedures 461
Example: Deleting Rows Containing Blank Cells 462
Example: Deleting Blank Rows 463
Example: Automating the Use of Filters to Remove Blanks or Other Specified Items 464
Example: Performing Multiple Database Queries 468
Example: Consolidating Data Sets That Are Split Across Various Worksheets or Workbooks 469

CHAPTER 33
User-defined Functions 473
Introduction 473
Benefits of Creating User-defined Functions 473
Syntax and Implementation 474
Practical Applications 475
Example: Accessing VBA Functions for Data Manipulation: Val, StrReverse and Split 476
Example: A Wrapper to Access the Latest Excel Function Version 477
Example: Replication of IFERROR for Compatibility with Excel 2003 478