INDEX

Absolute temperature scale, see Kelvin scale
Acid/alkaline denaturation
 calorimetry, 173, 174
 cooperativity, 174
 protonation, 173, 174
 titratable groups, 173
Acid–base equilibrium, 18–20
A-DNA, 92
Alpha-helix
 calorimetry, 95–105
 cooperativity, 97–101
 ellipticity, 97
 enthalpy, 102–104
 entropy, 103, 104
 Gibbs energy, 103–105
 heat capacity, 99–102
 hydration, 1–3, 105
 hydrogen bonding, 103–105
 stability, 103
 unfolding, 95–99
 van der Waals, 104, 105
 van’t Hoff enthalpy, 95, 96

Alpha-lactalbumin, 235
Amino acids
 d- and l-isomers, 76
 ionization, 74
 pK values, 74
 solubility, 88
 structure, 73–75
Anhydrous protein
 chymotrypsinogen, 203, 205
 heat capacity, 202–205
 hydrogen bonding, 208, 209
 packing density, 208
 polypeptide, 203
 rigidity, 210, 213
 thermal motion, 204
 unfolding enthalpy, 204–210
 unfolding entropy, 210–213
 van der Waals interactions, 208–209
 Antennanapedia homeodomain, see
 Homeodomains
 Apolar groups, see Nonpolar groups
Apomyoglobin
 cold denaturation, 170–171
 heat denaturation, 170–171
 molten globule, 234–240
Aqueous solutions, 16–18
Aromatic groups
 hydration enthalpy, 195–199
 hydration entropy, 195–199
 hydration heat capacity, 195–199
Association entropy
 cratic entropy, 273–275
 coiled-coil formation, 283–285
 experimental verification, 275–276
 Streptomyces subtilizin dimerization, 277–283
 translational entropy, 273–275
 vibrational entropy, 275
Association reaction
 association constant, 33
 binding isotherm, 34
 dissociation constant, 34
 enthalpy, 34
 ATF2/cJun bZIP, 313–317
 AT-hook/DNA, 322–326
Barnase
 heat capacity, 158, 159
 heat denaturation 158–160
 unfolding, 158, 159
B-DNA, 92–94
Bovine pancreatic trypsin inhibitor
 heat capacity, 203
 unfolding, 207
BPTI, see Bovine pancreatic trypsin inhibitor
bZIPS, see ATF2/cJun; GCN4
Calcium-binding proteins
 calmodulin, 258–262
 light chain of myosin, 258
 parvalbumin, 258–260
 troponin C, 258, 261
Calmodulin
 calorimetry, 261–263
 peptide recognition, 287–292
 structure, 258–262
Calorimetry, of polynucleotides 361–372
 DNA duplexes, 361–372
 DNA phage T2, 354–357
 Poly(a)Poly(U), 357–361
 tRNA 378–383
Calorimetry, of protein–DNA complexes
 ATF2/cJun bZIP, 313–316
 AT-hook, 322–326
 HMG boxes, 326–331
 homeodomains, 300–307
 NF-κB, 345, 346
 HMGAI, 345–346
Calorimetry, of proteins
 alpha-helix, 95–105
 calmodulin c, 259–263, 287–293
 coiled-coils, 106–110
 collagen, 135–141
 fibrinogen, 264–267
 fibronectin, 267–268
 leucine zipper, 118–123
 myosin light chain, 58
 myosin rod, 115, 116
 ovomucoid, 255–258
 papain, 250, 251
 paramyosin, 116, 117
 parvalbumin, 258–260
 pepsinogen, 251–255
 plasminogen, 263–264
 Streptomyces subtilisin, 277–283
 troponin, 117, 118
 troponin, 258, 261
Calorimetry experiment
 binding characteristics, 41–43
 complex heat capacity profiles, 60, 61
 correction on refolding, 61–63
 denaturation enthalpy, 56–58
 heat capacity, 53–54
 multicomponent transition, 59, 60
 van’t Hoff enthalpy, 58, 59
Calorimetry instruments
 batch calorimeter, 35
 flow-mix calorimeter, 35, 36
 heat capacity calorimeter (DSC), 43–53
 isothermal reaction calorimeter (ITC), 33–43
 pressure–perturbation calorimeter, 63–66
Calorie, see Energy units
CC concept, see Counterion condensation theory
Celsius scale, see Temperature scales
Chemical structure, of proteins
 amino acid residues, 71–76
 C-terminal, 72
 N-terminal, 72
 peptide bond, 72
Chymotrypsinogen anhydrous, 203, 205
Coiled-coils
 calorimetry, 106–110
 discreteness, 123
 entropy of formation, 283–285
 leucine-zipper GCN4, 118–123
 muscle proteins, 113–118
 three-stranded, 110, 113
 two-stranded, 105–110
 unfolding, 106–110
Cold denaturation
 apomyoglobin, 170, 171
 calorimetry, 169–171
 ellipticity, 169
 experimental observation, 168–173
 intrinsic viscosity, 169, 170
 lactoglobulin, 171
 myoglobin, 169, 170
 NMR, 169
 phosphoglycerate kinase, 169, 171
 protonation, 168
 staphylococcal nuclease, 171
Collagen
 calorimetry, 135–141
 chemical structure, 127, 128
 conformation, 127–127
 cooperativity, 132, 133
 melting enthalpy, 130, 135–140
 melting entropy, 133, 135–138
 flexibility, 129–131, 145–148
 hydration, 140–143
 hydrogen bonds, 129–131
 hydrogen exchange, 129, 130, 145–148
 Rich-Crick model, 129
 Ramachandran models, 129, 130, 131
 physical structure, 127–129
 role of pyrrolidines, 134, 135
 stability, 131–133, 148, 149
 thermodynamics, 133–135, 138–140
Completeness, of protein unfolding, 182–186
Conformation, of polypeptide chain
 alpha-helix, 83–85
 cis-trans isomers, 78
 conformational freedom, 79–81
 entropy, 79, 80
 local restrictions, 81–82
 long-range restrictions, 82, 83
 peptide unit, 77, 78
 polyproline helix, 85, 86
 random coiled, 81
 regular conformation, 82–86
Cooperativity, in protein unfolding, 225, 242, 243
Cratie entropy, 273–275
Denaturants
 calorimetry, 176–178
 denaturants, 154, 175–182
 enthalpy of binding, 180, 181
 Gibbs energy of binding, 180–181
 GuHCl–protein interaction, 175–182
 protein stability, 175, 176
 urea–protein interaction, 175–182
Denaturation of proteins, see Unfolding, of proteins
Discreteness, in proteins, 113–118, 268–271
Dissipative forces, 219–222
DNA
 A and B conformation, 92
 bending, 331–334, 375–376
 calorimetry, 354–357, 361–371
 chemical structure, 89, 90
 density, 372–375
 double helix, 92, 94
 grooves, 92
 hydration, 339–344, 372–375
 melting temperature, 356–357
 specificity of the AT sequences, 366–372
 thermodynamics, 366–367
DNA–binding proteins
 ATF2/Jun bZIP, 313–316
 AT-hook, 322–326, 346
 GCM4 bZIP, 307–313
 HMG boxes, 326–331
 HMGI/Y, 322
 homeodomains, 300–307
 IRF-3, 317–319
 NF-kB, 320–322, 346
DNA calorimetry
 correction on premelting, 364–366
 correction on residual structure, 363–366
 DSC, 354–357
 intrinsic melting enthalpy, 366–371
 intrinsic melting entropy, 371–372
 ITC, 362
DNA–protein interaction
 AT-hook, 322–326
 bZIPs, 307–316
 CC and PDB approach, 297–300, 346, 347
 GCN4, 307–313
 HMG boxes, 326–331
 homeodomains, 300–307
 hydration, 341–344
 IRF3, 317–322
 major groove binding, 300–322, 339–342
 minor groove binding, 322–331, 339–345
 multicomponent complexes, 345–346.
 non-sequence-specific binding, 331–336
 salt effect, 336–339
 sequence-specific binding, 331–336
Domains, in proteins, see Discreteness, in proteins
Dry protein, see Anhydrous protein
Dyn, see Force units
Energy units
 calorie, 7
 erg, 8
 joule, 8

Energy
 definition, 5
 conservation law, 5
 Gibbs free energy, 13

Engrailed homeodomain, 300–306, 332
Enhanceosome, 345–347
Enhancer DNA, 345

Enthalpy
 alpha helix, 103, 104
 base-pairing, 383
 collagen, 135–138
 definition, 6
 DNA, 354–357, 369–372
 hydration, 24, 194–199, 207
 polynucleotides, 357–361
 protein–DNA interactions, 303–341
 protein unfolding, 155–181, 214, 215
 tRNA, 378–383
 van’t Hoff, 15

Entropy
 conformational, 210–213
 definition 11–13
 hydration, 24, 211–213
 rotation, 273–275
 translation, 273–275
 vibration, 275

Equine lysozyme, 236, 237

Erg, see Energy units

Evolution, of proteins, 254–256, 260, 267, 271

Fahrenheit scale, see Temperature scales

Fibrinogen, 264–267
Fibronectin, 267–268

Flexibility, of protein structure
 collagen, 129–131, 148, 149
 globular proteins, 228, 229
 hydrogen exchange, 226–228
 microunfoldings in protein, 225–228
 protein–DNA interaction, 298–341
 hydration, 24–32, 197, 198

Globular proteins, see also Proteins
 cold denaturation, 167–173
 compactness, 153
 denaturation, 153–181
 disulfide crosslinks, 159, 183
 ellipticity, 169, 175, 184, 185
 flexibility, 169
 heat capacity, 155, 158–161
 heat denaturation, 155–167
 pH titration, 174
 protonation/deprotonation, 168
 stability, 161–167, 175, 176, 186–190
 standard entropy, 187, 189
 thermodynamic characteristics, 186–189
 unfolded state, 154, 159, 182–186
 unfolding, 155–182
 viscosity, 170, 183, 184

GuHCl–protein interaction, 175–182

Heat capacity
 definition, 8
 hydration, 24, 25
 molar, 9
 partial, 20–23
 specific, 8, 9
 water, 18

Heat capacity, of proteins
 alpha helix, 99, 102
 anhydrous, 202–204
 BPTI, 202
 chymotrypsinogen, 203, 205
 collagens, 136
 cytochrome c, 203
 globular proteins, 155–162
 hydration effect, 24, 25, 194–196
 molar, 9
 myosin rod, 115, 116
 paramyosin 116
 partial, 20–23
 specific, 8, 9
 tropomyosin, 117
 unfolding increment, 205
 water, 18
Heat capacity, of polynucleotides and their complexes
DNA phage T4, 354
DNA duplex, 361–364
polynucleotides, 357–361
protein–DNA complexes, 302, 305, 328

Heat denaturation, of proteins
apo-cytochrome, 157, 181
apomyoglobin, 170, 171
barnase, 158, 160
cooperativity, 156–158
heat capacity increment, 158–160
lactoglobulin, 171
lysozyme, 157, 164, 174, 176–178, 184, 186, 189
myoglobin, 161–166, 168–171, 184, 189
phosphoglycerate kinase, 171, 172
reversibility, 155
stability, 161–167
staphylococcal nuclease, 171
thermodynamic specification, 186–189
ubiquitin, 160

Hierarchy, in proteins
primary structure, 71–76
quaternary structure, 88, 89
secondary structure, 82–86
tertiary structure, 88–88

Hydration
collagen, 140–143
folded protein, 199, 200
Gibbs energy, 24, 32
heat capacity effect, 21, 22
protein groups, 193–199
unfolded proteins, 200–201
water accessible area, 201

Hydrogen bonds
alpha-helix, 103–105, 216–218
enthalpy, 216, 217
Gibbs energy, 217
network hydrogen bonds, 216
reduced hydrogen bonds, 216
van der Waals contribution, 215
water, 16–18

Hydrogen exchange
collagens, 129, 130, 145–148
globular proteins, 226–228
Hydrophobic effect, 25–28, 218, 219, 242

Interactions, in proteins
electrostatic, 208, 209
hydrogen bonding, 216, 217, 219, 220
hydrophobic, 25–28, 218–223
van der Waals, 204–210, 219–220

IRF3 transcription factor
C-terminal domain, 317, 318
DNA bending, 319
DNA binding sites, 317
linker, 318
N-terminal domain, 317, 318
isothermal titration calorimeter (ITC)
data analysis, 41–43
experiment, 38–41
instruments, 36–38

Joule, see Energy units

Kinetics, of protein folding, 233
Kirchhoff’s relation, 9

Leucine-zipper, see GCN4 bZIP
Leventhal paradox, 233

Light chain, of myosin, 258

Lysozyme
acid denaturation, 173, 174
calorimetry, 158, 164, 174, 176–178, 184, 186, 189
GuHCl denaturation, 176–178
heat capacity, 203, 205
heat denaturation, 158
hydration, 207, 211
intrinsic viscosity, 183–184
isothermal titration, 173–175
unfolding enthalpy, 10–11, 186, 214
unfolding Gibbs energy, 186–189

Matt2 homeodomain, 300–306, 332

Microunfoldings, in proteins, see Hydrogen exchange

Molten globule
alpha-lactalbumin, 235
apomyoglobin, 239, 240
concept, 234–240
equine lysozyme, 236, 237
staphylococcal nuclease, 236, 238

Multidomain proteins
discreteness in proteins, 268–271
fibrinogen, 264–267
fibronectin, 267–268
light chain, of myosin, 258
ovomucoid, 255–258
papain, 250, 251
parvalbumin, 258–260
Multidomain proteins (cont’d)
plasminogen, 263–264
troponin, 258, 261

Muscle proteins, 113–118
discreteness, 113–115
myosin rod, 115, 116
paramyosin, 116, 117
troponyosin, 117, 118

Myoglobin

- cold denaturation, 169, 170
effect, 169
- enthalpy of unfolding, 214
- heat capacity, 161, 171, 203, 205
- heat denaturation 161–166, 168–171, 184, 189
- hydration enthalpy, 207
- hydration entropy, 211
- intrinsic viscosity, 184
- stability, 166, 189
- unfolding, 162

Myosin rod

- calorimetry, 115, 116
discreteness, 113–118

Newton, see Force units

NF-κB transcription factor, 320–322

NK-2 homeodomain, 300–306, 332

Nonpolar groups

- hydration enthalpy, 195
- hydration entropy 195
- van der Waals interaction, 208

Nucleic acids

- chemical structure, 70, 89, 90
- nucleotides, 90
- physical structure, 91–94
- thermodynamics, 353–383

Ovomucoid, 255–258

Packing density, 229–231

Papain, 250, 251

Paramyosin, 116, 117

Partial heat capacity, see Heat capacity

Parvalbumin, 258–260

Peptide bond, see Proteins

Peptide unit, 77, 78

Phase transitions in proteins, 243, 244

Phosphoglycerate kinase, 171, 172

Plasminogen, 263–264

Poisson-Boltzman (PB) equation, 298, 346, 347

Polar groups

- hydration enthalpy, 196
- hydration entropy, 197
- hydration heat capacity, 196

Polynucleotides

- DSC, 358, 359
- ITC, 360
- unfolding, 357–361

Polypeptide chain

- amino acid residues, 71–76
- conformation, 76–81
- C-terminal, 72
- N-terminal, 72,
- peptide bonds, 72
- peptide unit, 72

Polyproline coiled-coils, see Collagen

Pressure perturbation calorimetry (PPC)

- background, 63–65
- experiment, 65–67
- thermal expansion coefficient, 63–65

Primary structure, of proteins, see Chemical structure, of proteins

Protein folding

- cooperativity, 225, 226
- forces, 220–223
- intermediate states, 233
- kinetics, 233
- mechanisms of cooperation, 242, 243

Protein interior

- packing density, 229–232
- flexibility, 226–228

Proteins

- anhydrous, 202–213
- chemical structure, 71–76
- conformations, 76–85
- domain organization, 113–118, 268–271
- entropy, 79–80
- evolution, 69–71
- flexibility, 226–228
- globular, 153–189
- hierarchy, 86–88
- hydration, 88, 193–202
- physical structure, 76–81
- primary structure, 71–76
- quaternary structure, 88, 89
- random coil, 81
- regular conformations, 82–86
- stability, 225, 226
- tertiary structure, 86–88

Purines, 90

Pyrimidins, 90

Quaternary structure, of proteins, see Hierarchy, in proteins

Ramachandran plot, 81–83

Ribonuclease A

- GuHCl effect, 180
- heat capacity, 161, 179, 203, 205
hydration enthalpy, 207
hydration entropy, 211
intrinsic viscosity, 184
stability, 189
unfolding, 162
RNA
chemical structure, 89, 90
physical structure, 91–94
poly(A)poly(U), 357–361
tRNA, 376–383
Sacker-Tetrod equation, 274
Stability, of protein
coooperativity, 242, 243
macro stability, 225, 226
micro-stability, 226–228
thermodynamic states, 243, 244
Staphylococcal nuclease, 236, 238
Streptomyces subtilisin
calorimetry, 277–283
entropy of dimerization, 277–283
structure, 277
Temperature
definition, 6
absolute scale, 7
Celsius scale, 7
Fahrenheit scale, 7
Kelvin scale, 7
Thermodynamic states, of protein, 186–189, 243, 244
Three-stranded-coiled-coil, 110–113
Transcription factors
bZIP, 307–313
HMG boxes, 325–331
homeodomains, 300–307
IRF3, 317–319
NF-κB, 320–322
Translational entropy, see Association entropy
tRNA
base-pairing, 383
calorimetry, 378–380
melting profiles, 380, 381
structures, 377
thermodynamic analysis, 381–385
Tropomyosin, 113–118
Troponin, 258, 261
Two-stranded coiled-coils
calorimetry, 106–110
structure, 105, 106
Unfolding, of proteins
cold denaturation, 167–173
completeness, 182–186
cooperaativity, 156–158
denaturant effect, 175–182
e ellipticity, 184, 185
heat capacity increment, 158–161
heat denaturation, 155–167
pH denaturation, 173–175
reversibility, 155–156
stability, 161–167, 167–173
unfolded state, 182–186
viscosity, 170, 183, 184
Urea–protein interaction, 179–182
enthalpy of binding, 180, 181
Gibbs energy of binding, 180–181
Van’t Hoff equation, 15
Voronoi polyhedron, 229, 230
Water
heat capacity, 18
hydrogen bonds, 18
structure, 16–18