CONTENTS

Preface xix

PART I OVERVIEW 1

CHAPTER 1 IMPACT OF PHYSICAL TECHNOLOGY ON ARCHITECTURE 3

John H. Edmondson

1.1 Introduction 3
 1.1.1 Suitability of CMOS Technology 3
 1.1.2 Physical Technology Impact at Various Scales 4
 1.1.3 RISC and the Importance of Well-Chosen Architecture 4
 1.1.4 Key High-Level Decisions and Trade-Offs 5
 1.1.5 Other Technology Issues 5

1.2 Implementing Processor Architecture in CMOS Technology 6
 1.2.1 Dynamic Logic 6
 1.2.2 Advanced Logic Styles 9
 1.2.3 Dynamic Logic Examples from High-Performance Processor Designs 9
 1.2.4 Datapaths 12
 1.2.5 RAMs 12

1.3 Choosing the Cycle Time of a High-Performance Microprocessor 14
 1.3.1 Critical Loops 15

1.4 Comparison of PA8000, 21164, and 21264 Processors 15

1.5 Trend in Interconnect Resistance 17
 1.5.1 Interconnect Inductance 17
 1.5.2 Architectural Consequences of Interconnect Trends 18

1.6 Trend in Power Consumption 18
 1.6.1 Power Estimation and Scaling 18
 1.6.2 Energy-Delay Product 20
 1.6.3 Physical Limits of Heat Dissipation 20
 1.6.4 Active Power Control 21
 1.6.5 V_{dd} Reduction 21
 1.6.6 Ultimate Impact of Power 21

1.7 Advanced Packaging 21

1.8 Conclusion 23

References 23
PART II TECHNOLOGY ISSUES 25

CHAPTER 2 CMOS SCALING AND ISSUES IN SUB-0.25μm SYSTEMS 27

Yuan Taur

2.1 MOSFET Scaling Theory 27
2.1.1 Constant-Field Scaling 27
2.1.2 Two-Dimensional Scale Length Theory 29
2.2 CMOS Scaling Issues below 0.25 μm 31
2.2.1 Power Supply and Threshold Voltage 31
2.2.2 Gate Oxides 35
2.2.3 Channel Profile Design 36
2.3 Interconnect RC Delay 39
2.3.1 Interconnect Scaling 39
2.3.2 Global Wire Issues 41
2.4 Low-Temperature CMOS 42
References 44

CHAPTER 3 TECHNIQUES FOR LEAKAGE POWER REDUCTION 46

Vivek De, Yibin Ye, Ali Keshavarzi, Siva Narendra, James Kao, Dinesh Somasekhar, Raj Nair, and Shekhar Borkar

3.1 Introduction 46
3.2 Transistor Leakage Current Components 47
3.2.1 p-n Junction Reverse Bias Current (I_t) 48
3.2.2 Weak Inversion (I_s) 49
3.2.3 DIBL (I_d) 49
3.2.4 GIDL (I_g) 49
3.2.5 Punchthrough (I_p) 50
3.2.6 Narrow Width Effect (I_n) 50
3.2.7 Gate Oxide Tunneling (I_o) 50
3.2.8 Hot Carrier Injection (I_h) 51
3.3 Circuit Subthreshold Leakage Current 52
3.3.1 Transistor Stack Effect 52
3.3.2 Steady-State Leakage Model of Transistor Stacks 53
3.3.3 Transient Model of Transistor Stack Leakage 55
3.4 Leakage Control Techniques 55
3.4.1 Standby Leakage Control by Input Vector Activation 55
3.4.2 Embedded Dual-Vt Design for Domino Circuits 57
3.4.3 Adaptive Body Biasing 58
Acknowledgments 61
References 61
6.3 Survey of Process Variations 102
 6.3.1 Device Geometry Variations 102
 6.3.2 Device Material Parameter Variations 102
 6.3.3 Device Electrical Parameter Variations 103
 6.3.4 Interconnect Geometry Variations 103
 6.3.5 Interconnect Material Parameter Variations 104
6.4 Methods to Characterize and Address Variation 105
 6.4.1 Statistical Device Models 105
 6.4.2 Sensitivity Analysis 106
 6.4.3 Worst-Case Analysis 106
 6.4.4 Spatial Variation Modeling and Mismatch 107
6.5 Application of Methods to Interconnect Impact Analysis 108
 6.5.1 Example: Random and Wafer Level Variation Impact 109
 6.5.2 Example: Interconnect Sensitivity Analysis 111
 6.5.3 Example: Statistical Interconnect Impact 111
 6.5.4 Example: Deterministic Interconnect Variation Impact 112
6.6 Conclusion 114
References 114

PART III CIRCUIT STYLES FOR LOGIC 117

CHAPTER 7 BASIC LOGIC FAMILIES 119

Kerry Bernstein

7.1 Introduction 119
7.2 Nonclocked Logic 119
 7.2.1 Static Combinatorial CMOS Logic 120
 7.2.2 DCVS 124
 7.2.3 Pass-Gate Logic 125
7.3 Clocked Logic 128
 7.3.1 Domino Logic—Single and Differential 128
 7.3.2 Latched Evaluate Logic 130
7.4 Self-Timed and Asynchronous Logic 131
 7.4.1 Self-Resetting CMOS 131
 7.4.2 Clock-Delayed Domino 132
7.5 Implementation Issues 133
 7.5.1 Circuit Style Selection Criteria 133
 7.5.2 Design Metrics 137
7.6 Conclusion 138
Acknowledgments 138
References 138

CHAPTER 8 ISSUES IN DYNAMIC LOGIC DESIGN 140

Paul Gronowski

8.1 Introduction to Dynamic Logic 140
 8.1.1 Basics of Dynamic Logic 140
 8.1.2 Examples of Dynamic Logic 142
Contents

8.1.3 Comparison of Dynamic Logic to Standard Complementary CMOS Logic 145

8.2 Design Issues with Dynamic Logic 146
8.2.1 Charge Leakage 146
8.2.2 Charge Sharing 148
8.2.3 Capacitive Coupling Issues 150
8.2.4 Minority Carrier Charge Injection 153
8.2.5 Supply Noise and Variation 155

8.3 Conclusion 156

References 157

CHAPTER 9 SELF-TIMED PIPELINES 158

Ted Williams

9.1 Introduction 158
9.2 Individual Stages 160
9.3 Definitions 163
9.4 Self-Timed Control Interconnections 164
9.5 Overall Pipeline Latency and Throughput 168
9.5.1 Ring Performance Graphs 169
9.5.2 Performance Region Edges 171
9.6 Applications 173
9.7 Margin, Testing, and Power Issues 176
9.8 Conclusion 178

References 179

CHAPTER 10 HIGH-SPEED VLSI ARITHMETIC UNITS: ADDERS AND MULTIPLIERS 181

Vojin G. Oklobdzija

10.1 Introduction 181
10.2 High-Speed Addition: Algorithms and VLSI Implementation 181
10.2.1 Full Adder 181
10.2.2 Ripple Carry Adder 183
10.2.3 Carry Skip Adder 183
10.2.4 Variable Block Adder 184
10.2.5 Carry Lookahead Adder 185
10.2.6 Recurrence Solver-Based Adders 190
10.2.7 Ling Adder 191
10.2.8 Conditional-Sum Addition 192
10.2.9 Carry Select Adder 192
10.2.10 DEC “Alpha” 21064 Adder 193

10.3 Multiplication 193
10.3.1 Algorithm 193
10.3.2 High-Performance Multipliers 195

10.4 Conclusion 202

References 203
PART IV CLOCKING 205

CHAPTER 11 CLOCKED STORAGE ELEMENTS 207

Hamid Partovi

11.1 On Clocking Strategy 207
11.2 The Nonideal Nature of Clock Signals 209
 11.2.1 Jitter 209
 11.2.2 Skew 210
11.3 The Basic Latch-Pair 210
11.4 The Basic Flip-Flop 211
11.5 Rules for Robust Design—1 213
11.6 Timing Properties of Sequential Logic 215
 11.6.1 Edge-Triggered Clocking 216
 11.6.2 Level-Sensitive Clocking 217
 11.6.3 Slack-Passing and Time-Borrowing 219
 11.6.4 Two-Wire Non-Overlapping Clocks 220
11.7 Comparing Latch-Pairs and Flip-Flops 220
11.8 High-Performance Clocked Storage Elements 221
 11.8.1 The Modified Svensson Latch 222
 11.8.2 The Transmission-Gate Level-Sensitive Latch 223
 11.8.3 The Amplifier-Based Flip-Flop 223
 11.8.4 The Latch and Flip-Flop Hybrid Element 225
11.9 Rules for Robust Design—2 228
11.10 Performance Metrics for Clocked Storage Elements 229
11.11 Latching Elements for Dynamic Circuits 231
11.12 Recommendations and Conclusion 233
References 233

CHAPTER 12 DESIGN OF HIGH-SPEED CMOS PLLs AND DLLs 235

John George Maneatis

12.1 Introduction 235
12.2 PLL Architectures 236
 12.2.1 Loop Components 238
12.3 Delay-Locked Loops 238
 12.3.1 DLL Frequency Response 239
 12.3.2 DLL Design Strategy 240
 12.3.3 Alternative DLL Structures 240
12.4 Phase-Locked Loops 241
 12.4.1 PLL Frequency Response 242
 12.4.2 PLL with Higher-Order Roll-Off 244
 12.4.3 PLL Design Issues 247
 12.4.4 PLL Design Strategy 248
12.5 Advanced PLL Architectures 249
12.6 DLL/PLL Performance Issues 250
CHAPTER 13 CLOCK DISTRIBUTION 261

Daniel W. Bailey

13.1 Introduction 261
13.1.1 Definitions 262
13.2 Objectives 265
13.2.1 Ideal Clock Objectives 265
13.2.2 Evaluation of Objectives 266
13.3 Implementation 268
13.3.1 Final Stage Drivers 268
13.3.2 Predriver Network 269
13.3.3 Examples 271
13.3.4 Trends 273
13.4 Clock Driver Layout 273
13.4.1 Electromigration 275
13.4.2 Productivity 275
13.4.3 Yield 276
13.5 Variation 276
13.5.1 Process 276
13.5.2 Power Supply 277
13.5.3 Temperature 278
13.5.4 Data-Dependent Noise 279
13.6 Conclusion 279
References 280

PART V MEMORY SYSTEM DESIGN 283

CHAPTER 14 REGISTER FILES AND CACHES 285

Ronald Preston

14.1 Basic Architecture 286
14.1.1 General Purpose Registers 286
CHAPTER 15 EMBEDDED DRAM 309

Tadaaki Yamauchi and Michihiro Yamada

15.1 Introduction 309
15.2 DRAM Basis 309
15.3 Voltage Generator 315
15.4 Embedded DRAM 319

References 327
PART VI INTERCONNECT AND I/O 329

CHAPTER 16 ANALYZING ON-CHIP INTERCONNECT EFFECTS 331

Noel Menezes and Lawrence Pileggi

16.1 Introduction 331
 16.1.1 Process Scaling, Interconnect Scaling, and Noise 331
 16.1.2 Local and Global Interconnect 332
 16.1.3 Interconnect Modeling 332
 16.1.4 The Duality between Noise and Delay 334
16.2 Simplified Interconnect Analysis 335
 16.2.1 The Elmore Delay and Its Properties 335
 16.2.2 A Noise Bound for Coupled Interconnect 337
16.3 Model Order Reduction 338
 16.3.1 An Example 339
 16.3.2 Calculating Moments 340
 16.3.3 Moment Matching—AWE 342
 16.3.4 Applying AWE to Delay and Noise Analysis 344
 16.3.5 Other Model Order Reduction Techniques 345
16.4 Driver Models 346
 16.4.1 Resistance Shielding 346
 16.4.2 The Effective Capacitance Drive Model for RC Loads 347
 16.4.3 N-Port Driver Models 349
16.5 Conclusion 350

References 350

CHAPTER 17 TECHNIQUES FOR DRIVING INTERCONNECT 352

Shannon V. Morton

17.1 Introduction 352
17.2 Technology Scaling Trends 352
 17.2.1 Relative Spatial Dimensions 352
 17.2.2 Faster Edge Rates 356
 17.2.3 Longer Electrical Lengths On-Chip 357
 17.2.4 Process Variation 358
 17.2.5 Architectural Issues 358
 17.2.6 Power Dissipation 359
17.3 Problems and Solutions Regarding Capacitance 359
 17.3.1 Power Dissipation 360
 17.3.2 Delay Variations 360
 17.3.3 Crosstalk Noise 361
 17.3.4 Potential Solutions 361
17.4 Problems and Solutions Regarding Inductance 364
 17.4.1 Delay Variations 367
 17.4.2 Crosstalk Noise 368
 17.4.3 Potential Solutions 369
17.5 Problems and Solutions Regarding Resistance 370
17.6 Problems and Solutions Regarding Long Distance Routing 371
 17.6.1 Repeater Insertion 371
CHAPTER 18 I/O AND ESD CIRCUIT DESIGN 377

Stephen C. Thierauf and Warren R. Anderson

18.1 Introduction 377
18.2 Power Supply Considerations 378
 18.2.1 Split Power Supply Systems 378
 18.2.2 Power Supply Clamps 379
18.3 Off-Chip-Driver Edge Rate Control 380
18.4 Mixed-Voltage I/O 381
 18.4.1 Floating Well Driver 381
 18.4.2 Open Drain Signaling 382
 18.4.3 Cascoding 383
 18.4.4 Level Shifting 384
18.5 Impedance Matching 384
18.6 Precompensation Drivers 385
18.7 Input Receivers 385
18.8 The ESD Threat 386
18.9 ESD Models 387
18.10 Circuit Topology of the ESD Protection Network 388
 18.10.1 The Qualities of Good ESD Protection 388
18.11 ESD Protection Design Elements and Methods 389
 18.11.1 Nonsilicided and Silicide-Blocked NMOS 389
 18.11.2 Silicided NMOS 390
 18.11.3 Double Diode ESD Protection 392
18.12 Power Supply Clamps 393
18.13 CDM Considerations 394
References 395

CHAPTER 19 HIGH-SPEED ELECTRICAL SIGNALING 397

Stefanos Sidiropoulos, Chih-Kong Ken Yang, and Mark Horowitz

19.1 Transmission Lines 398
 19.1.1 Image Currents 398
 19.1.2 Reflections 399
 19.1.3 Attenuation 400
 19.1.4 Methods of Signaling 401
19.2 Link Performance Metrics 402
 19.2.1 FO-4 Delay Metric 402
 19.2.2 Link Margins 403
PART VII RELIABILITY 427

CHAPTER 20 ELECTROMIGRATION RELIABILITY 429

J. Joseph Clement

20.1 Introduction 429
20.2 Materials and Process Effects on Electromigration 430
 20.2.1 Interconnect Technology Evolution 430
 20.2.2 Effect of Interlevel Dielectrics 431
 20.2.3 Microstructure, Line Width, and Line Length 432
20.3 Electromigration Lifetime 434
 20.3.1 Electromigration Transport 434
 20.3.2 Accelerated Lifetime Characterization 435
 20.3.3 Modeling Electromigration 436
 20.3.4 Pulsed dc and ac Operation 437
20.4 Designing for Electromigration Reliability 439
 20.4.1 Reliability Budgeting 439
 20.4.2 CAD Tools 439
 20.4.3 CAD Reliability Analysis 442
 20.4.4 rms Current Limits 445
20.5 Conclusion 445
 Acknowledgments 446
 References 446

CHAPTER 21 HOT CARRIER RELIABILITY 449

Kaizad Mistry

21.1 What Are Hot Carriers? 449
21.2 How Do Hot Carriers Degrade MOSFETs? 452
21.3 Modeling the Degradation 454
21.4 Circuit Effects 457
21.5 Ensuring Circuit Reliability 460
21.6 Example Analysis 461
21.7 Transistor Scaling Trends 463
References 464

PART VIII CAD TOOLS AND TEST 467

CHAPTER 22 OVERVIEW OF COMPUTER-AIDED DESIGN TOOLS 469

Yao-Tsung Yen

22.1 Introduction 469
22.2 Micro-Architecture Design and Circuit Feasibility Study Tools 470
22.3 RTL Model Design Tools 471
22.4 Datapath/Memory Design Tools 473
 22.4.1 Datapath/Memory Schematic Design Tools 473
 22.4.2 Datapath/Memory Layout Design Tools 475
22.5 Control Logic Design Tools 475
22.6 Chip Assembly and Global Net Route 476
22.7 Chip-Level Layout, Circuit, and Timing Verification 476
 22.7.1 Layout Verification 476
 22.7.2 Circuit and Timing Analysis 477
22.8 Test Patterns Generation 478
22.9 Conclusion 478
References 479

CHAPTER 23 TIMING VERIFICATION 480

Victor Peng

23.1 Introduction 480
23.2 Timing Verification Goals and Analysis 480
 23.2.1 Speed (Set-Up Time) Analysis 480
 23.2.2 Functional (Hold Time) Analysis 481
 23.2.3 The Timing Analysis Process 482
23.2.4 Max Path Modeling 483
23.2.5 Min Path Modeling 483
23.3 Key Factors in High-Speed Design and Timing Verification 484
 23.3.1 Product Goals 484
 23.3.2 Clocking and Storage Element Strategy 484
 23.3.3 Circuit Structures and Design Guidelines 489
23.4 Timing Verification of Non-memory Custom Blocks 490
 23.4.1 Dynamic Logic 490
 23.4.2 Pass-Gate Logic 491
 23.4.3 Self-Timed Logic 492