Preface

Applied mathematics has made considerable progress in wavelets. In recent years interest in wavelets has grown at a steady rate, and applications of wavelets are expanding rapidly. A virtual flood of engineers, with little mathematical sophistication, is about to enter the field of wavelets. Although more than 100 books on wavelets have been published since 1992, there is still a large gap between the mathematician’s rigor and the engineer’s interest. The present book is intended to bridge this gap between mathematical theory and engineering applications.

In an attempt to exploit the advantages of wavelets, the book covers basic wavelet principles from an engineer’s point of view. With a minimum number of theorems and proofs, the book focuses on providing physical insight rather than rigorous mathematical presentations. As a result the subject matter is developed and presented in a more basic and familiar way for engineers with a background in electromagnetics, including linear algebra, Fourier analysis, sampling function of $\sin \pi x / \pi x$, Dirac δ function, Green’s functions, and so on. The multiresolution analysis (MRA) is naturally delivered in Chapter 2 as a basic introduction that shows a signal decomposed into several resolution levels. Each level can be processed according to the requirement of the application. The application of MRA lies within the Mallat decomposition and reconstruction algorithm. MRA is further explained in a fast wavelet transform section with an example of frequency-dependent transmission lines. Mathematically elegant proofs and derivations are presented in a smaller font if their content is beyond the engineering requirement. Readers with no time or interest in this depth of mathematics may always skip the paragraphs or sections written in smaller font without jeopardizing their understanding of the main subjects.

The main body of the book came from conference presentations, including the IEEE Microwave Theory and Techniques Symposium (IEEE-MTT), IEEE Antennas and Propagation (IEEE-AP), Radio Science (URSI), IEEE Magnetics, Progress in Electromagnetic Research Symposium (PIERS), Electromagnetic and Light Scattering (ELS), COMPUMAG, Conference on Electromagnetic Field Computation (CEFC), Association for Computational Electromagnetic Society (ACES), International Conference on Microwave and Millimeter Wave Technology (ICMTT), and
International Conference on Computational Electromagnetics and its Applications (ICCEA). The book has evolved from curricula taught at the graduate level in the Department of Electronic Engineering at Canterbury University (Christchurch, New Zealand) and Arizona State University. The material was taught as short courses at Moscow State University, CSIRO (Sydney, Australia), IEEE Microwave Theory and Techniques Symposium, Beijing University, Aerospace 207 Institute, and the 3rd Institute of China. The participants in these courses were electrical engineering and computer science students as well as practicing engineers in industry. These people had little or no prior knowledge of wavelets.

The book may serve as a reference book for engineers, practicing scientists, and other professionals. Real-world state-of-the-art issues are extensively discussed, including full-wave modeling of coupled lossy and dispersive transmission lines, scattering of electromagnetic waves from 2D/3D bodies and from randomly rough surfaces, radiation from linear and patch antennas, and modeling of 2D semiconductor devices. The book can also be used as a textbook, as it contains questions, working examples, and 11 exercise assignments with a solution manual. It has been used several times in teaching a one-semester graduate course in electrical engineering.

The book consists of 10 chapters. The first six chapters are dedicated to basic theory and training, followed by four chapters in real-world applications. Chapter 1 summarizes mathematical preliminaries, which may be skipped on the first reading. Chapter 2 provides some background and theoretical insights. Chapter 3 covers the basic orthogonal wavelet theory. Other wavelet topics are discussed in Chapters 4 through 10, including biorthogonal wavelets, weighted wavelets, interpolating wavelets, Green’s wavelets, and multiwavelets. Chapter 4 presents applications of wavelets in solving integral equations. Special treatments of edges are discussed here, including periodic wavelets and intervallic wavelets. Chapter 5 derives the positive sampling functions and their biorthogonal counterparts using Daubechies wavelets. Many advantages derive from the use of the sampling biorthogonal time domain (SBTD) method to replace the finite difference time domain (FDTD) scheme. Chapter 6 studies multiwavelet theory, including biorthogonal and orthogonal multiwavelets with applications in the edge-based finite element method (EEM). Advanced topics are presented in Chapter 7, 8, and 9, respectively, for scattering and radiation, 3D rough surface scattering, packaging and interconnects. Chapter 10 is devoted to semiconductor device modeling using the aforementioned knowledge of wavelets. Numerical procedures are fully detailed so as to help interested readers develop their own algorithms and computer codes.

ACKNOWLEDGMENTS

I am indebted to all colleagues who have made contributions in this area. I am grateful to my former colleague, Professor Gilbert G. Walter, a pioneering mathematician, who introduced wavelets to me.
The grants for my research, from the Mayo Foundation, Boeing Aerospace Co., DARPA University Research Initiative, Cray Research, DARPA/MTO, DARPA/DSO, Oregon Medical Systems, W. L. Gore Associates, and the sabbatical funds of Arizona State University are greatly acknowledged. I am particularly grateful to Dr. Barry Gilbert, who has funded my research for nearly two decades. My appreciation is also due to Dr. James Murphy and Dr. Douglas Cochran for their long-term support of the research grants that have made long lasting research possible. The results of the research have formed the trunk of this book.

I wish to thank my former students, Dr. Mikhail Toupikov, Dr. Jilin Tan, Dr. Gaofeng Wang, Dr. Youri Tretiakov, Dr. Allen Zhu, Mr. Pierre Piel, Mr. Janyuan Du, and my students Ke Wang, Stanislav Ogurtsov, and Zhichao Zhang for their contributions. Finally, thanks are due to Professor Kai Chang for his invitation of the book proposal, and to my editor Mr. George Telecki for his patience and timely supervision during the course of publishing the book.

GEORGE W. PAN

Tempe, Arizona