| absorption, distribution, metabolism and excretion (ADME), 116, 132 |
| ace inhibitors, 30 |
| acetaminophen, 6 |
| active avoidance, 165, 168 |
| adults |
| absorption of compounds, 116–117 |
| common diseases, 31 |
| distribution of compounds, 117 |
| drug metabolism mechanisms, 117–119 |
| drugs exhibiting toxicities in, 6 |
| gastric emptying rate, 117 |
| glomerular filtration rate, 119 |
| intestinal enzyme activity, 117 |
| kinetic differences between children and, 3 |
| and nonclinical studies, 88–89 |
| age categories, 13, 15, 34–35, 72, 215–216 |
| age range, 11, 53, 71, 153, 160, 186, 205, 219, 257, 275 |
| age-related subclassifications, in pediatric drug development, 33–34, 85–86 |
| exposure differences, case example, 123–124 |
| expression and activity of enzymes and transporters, 119–123 |
| alpha α-Interferon, 6 |
| American Academy of Pediatrics (AAP), 4, 62 |
| aminoglycosides, 6, 184 |
| antibodies, 42, 45, 48–49, 145, 178, 199, 219, 233 |
| antihypertensive rescue medication, 33 |
| antihypertensive trial, 33 |
| antitherapeutic antibodies, 145 |
| area under the curve (AUC), 124, 192 |
| aspirin, 4, 6, 32, 175 |
| atmosphere characterization, in dog juvenile toxicity testing, 191 |
| attention-deficit/hyperactivity disorder (ADHD), 185 |
| auditory startle response, 165 |
| Basic Research Task Force (TF), 13 |
| behavioral evaluation, 162–170 |
| auditory startle response, 165 |
| eye blink, 170 |
| functional observational battery (FOB), 168–170 |
| learning, 165–166 |
| locomotor activity, 163–165 |
| memory, 165–166 |
| passive/active avoidance, 168 |
| watermaze negotiation, 167–168 |
| behavior/cognition, 184, 194–199 |
| benzyI alcohol, 4, 67 |

INDEX

Best Pharmaceuticals for Children Act (BPCA), 5, 63–66, 80, 89
beta β-blockers, 6
between-litter design, 154, 187
Biel maze, 167
bioavailability, 7
biologic license applications (BLAs), 62, 81
biologics, 42–43
biomedical research, 1, 213
biopharmaceuticals, 42
and age-related changes, 48
antidrug antibody (ADA) response for, 47–48
and cytochrome P450 enzymes, 48
decision tree, 52–55
dosage selection, 46–47
drug–drug interaction perspective, 48
and fetal exposure, 49
and IgG homeostasis, 48–49
immunogenicity measurements, 178
immunogenicity with, 47–48
and infant’s immune system, 48
and neonatal Fc receptor (FcRn), 48
pharmacodynamic basis for efficacy, 49–50
and pharmacologic relevance for species, 44–46
preclinical development plan, 51–52
pre-postnatal (PPN) development study, 53
biotransformation, 18, 108, 218
birth deformities, 61
blood collection, 17, 160, 241, 274, 292
blood collection reference chart, for juvenile rodent models, 160
blood pressure control, 33
blood sampling, 119–120, 215, 224, 256
body weight, during early development, 235
bolus delivery, of test article, 147–149
bone marrow, 82, 241, 243, 245, 249, 252, 260
bone measurements, 156–157

cardiovascular instability, in preterm infants, 31
cardiovascular surgery, in children, 33
cardiovascular system, 216
carrot and stick approach, 12
Center for Biologics Evaluation and Research (CBER), 43, 59
Center for Drug Evaluation and Research (CDER), 43, 59
central nervous system (CNS), 17, 66, 87, 132, 142, 185, 217
cesarean sectioning procedures, 174–175
child-friendly dosage forms, 37
Child Health Protection Act, 13
childhood acute lymphoblastic leukemia, 32
childhood illnesses, 1–2
Childhood Vaccine Injury Act, 66
Children’s Health Act, 5
child-specific exposure, 95
chloramphenicol, 4, 6, 32, 67
chloramphenicol-gray baby syndrome, 4
cholinesterase assessment, 161
Cincinnati water maze, 167
cisapride, 32
Clean Air Act, 4
clinical chemistry parameters, 160
clinical pathology, 46, 159–160, 189, 193, 199, 205, 224–225, 260, 273–274
clinical trials
antihypertensive trial, 33
benefits and risks in participating in a pediatric clinical trial, 34–37
death in, 32
early initiation, 36
FDA children’s age categories depicting “specific” problems, 35
and impact on care and survival rate of children, 32
measures necessary to gain adequate data, 32–33
multicenter, 32
nontherapeutic research, 36
not early initiation, 36
in pediatric populations, 130
rights of children to participate in trials, 32
role of clinician in, 36
therapeutic research, 36
timing and approach, 36
Clostridium botulinum, 6
Coban™, 152
combo study design, 132–134
Committee for Human Medicinal Products (CHMP), 74, 131
comparative cholinesterase studies, 105–106
Consumer Product Safety Commission (CPSC), 4
critical period of development, 150
cross fostering, 154, 188, 215
crown-rump length, 156, 202
CT scanning, 157, 204, 271
cyclosporine, 4
cynomolgus monkeys, 260–273
deferral, 12, 64, 80–81, 84, 214, 232
Department of Health and Human Services (US, DHHS), 59
Detection of Toxicity to Reproduction for Medicinal Products, 72
developmental immunotoxicity studies, 219
developmental landmarks, 100, 224, 232–233, 286
developmental neurotoxicity studies, 100–101, 161, 163
developmental thyroid study, 107–108
developmental toxicity screening studies, 96–97, 275, 283
development of organ systems, 288
diethylene glycol, 67
diethylene glycol poisoning tragedy (1930s), 31
diseases in children, 31
dog juvenile toxicity testing, 183, 185, 205
administration of oxygen to premature newborns, 184
age consideration, 186
for an inhaled drug, 189
assessment of toxicokinetics, 191–192
atmosphere characterization, 191
cardiovascular development, 199
classes of pharmaceutical compounds used, 184
clinical pathology, 193–194
CYP metabolic activity, 191–192
data interpretation of results, 205
gastrointestinal system, 199
histopathological changes, 184, 193–194
ICH M3(R2) guidance, 187
immune system, 199–200
initial preclinical studies, 184
in-life toxicological assessments, 192–193
learning and memory, 198
MDI dosing exposure system, 190
ophthalmology examinations, 198
oral gavage treatment technique, 189
organ system development, dog vs human, 185
parenteral technique of dosing, 189–190
physical development characteristics, 193, 195–196
postdosing development period, 188
postweaning period, 188
program design, 185–187
pulmonary system, 200
pup physical development, 186
renal system, 200
reproductive performance, 200–201
skeletal system, 202–205
split-litter-design-type randomization, 187
for studies of proton pump inhibitors, 188–189
study design, 187–189
subcutaneous and intramuscular dosing, 189–190
using oronasal exposure mask, 191
vestibular reflexes, 194, 197
dosage selection, 8, 46–47, 87, 90, 138, 141–145, 186, 288–289
justification for high, 143
pediatric guidelines, 143
pharmacodynamic and kinetic data (PK/TK) for, 143–145
in regulatory studies, 143
dosage volumes, 147–148
dose-range-finding studies, 281, 289, 291, 298
dosing
inhalation, 95
intramuscular, 189
intravenous, 147, 151
oral, 124, 285
subcutaneous, 151
dosing needles, 147
drug labeling, 61–62
drug metabolism enzymes (DME), 116
drug regulation, FDA
Best Pharmaceuticals for Children Act (BPCA), 63–66
children, 61
on combinations of toxicity studies, 73
developmental toxicity category, 69–70
device-specific guidance, 72
draft guidance on integration of studies, 70
drug products intended for use in pediatric population, 71
EU and EMA approach to pediatric testing, 73–75
history of, 60–61
ICH of Technical Requirements for Registration of Pharmaceuticals for Human Use, 72–74
impact on pediatric drug development, 88–90
of nonclinical pediatric testing, 67–72
for pediatric drugs, 62–63
pediatric population subgroups, defined, 71
Regulations (EC) no. 9101 and 1902/2006 (EMEA/520085/2006), 74
reproductive toxicology category, 69–70
“1994 Rule,” 62
toxicities in children, 66–67
drug transporter proteins (DTP), 116, 125
dual energy x-ray absorptiometry (DXA), 157, 202–204, 270–271, 274
efficacy/safety, 89
importance of age “sub” classification for, 33–34
endocrine screening and testing, 101–103
environmental chemicals, 96–103
INDEX

environmental contaminants, 93–109
developmental and reproductive toxicity screening studies for, 96–97
developmental neurotoxicity (DNT) study for, 100–101
endocrine screening and testing protocols, 101–103
multigeneration reproduction study for, 97–98
National Research Council (NRC) report, 95
one-generation reproductive toxicity study for, 98–99
Presidential Executive Order 13045, 95
regulation of, 94–96
risk assessment, 94–96
special nonguideline studies, 103–108
use of juvenile animal toxicity data in risk assessment, 108–109
US EPA documents, 95
Environmental Protection Agency (EPA), 4, 13, 94, 142
environmental toxicants, 3, 96, 104, 108–109
erythroblastosis fetalis, 7
estrous cycling, 171–174, 224
EudraCT, 74
European Centre for the Validation of Alternative Methods (ECVAM), 73
European Community (EC), 37
European Medicines Agency (EMA), 5, 12, 73–75, 81, 183, 214, 256
European Medicines Association (EMEA), 37, 73–74, 214, 221
European Union (EU), 9, 42–43, 54, 72–75, 79–81, 83, 87, 90, 104, 231–232
exposure
dermal, 151–152
inhalation, 152
intramuscular, 151
intraperitoneal, 147–148
oral, 152
period, 152, 191–192
routes of, 147
subcutaneous, 151
eye blink, 170, 217
FDA Amendments Act (2007), 89
FDA Amendments Act (HR 3580), 64
FDA Written Request, 12
Federal Food, Drug and Cosmetic Act (FDCA), 43
Federal Insecticide Fungicide and Rodenticide Act (FIFRA), 95
average during postnatal development, 158
relative during postnatal development, 158
feed restriction, 157
fetal evaluations, 175, 285
Final Rule 40 CFR Part 160, 142
Fischer rats, 146
Food and Drug Administration (FDA), 4, 12, 34, 43, 59–75, 80, 109, 129, 142, 183, 214, 256, 282
Food and Drug Administration Modernization Act (FDAMA), 4, 63–64, 80
Food Quality Protection Act (FQPA), 4, 95
food-use pesticides, 94
fostering, 154, 187, 215, 222–223, 283, 291
functional immunotoxicity evaluations, 178
functional markers, 17–18, 137, 259
functional observational battery, 168–170
fungicides, 141
gasping syndrome, 4
gastrointestinal system, 199, 217
gavage, 101–103, 147, 149, 189, 223, 226
gavage dosing tubes, 147, 149
genetic toxicology, 45, 131
glomerular filtration rate (GFR), 119, 137, 200
glutathione, 6
Good Laboratory Practices (GLP) regulations, 142
gray baby syndrome, 32
gray baby syndrome-chloramphenicol, 4, 32, 67
gross and histopathology, 193–194
group sizes, 153–154
group sizes and selection, of animals for study, 153–154
growth measures, 224
body weight, 155–156
bone measurements, 156–157
crown–rump length, 156
growth parameters, 133
Health and Environmental Science Institute (HESI), 137
health authority interaction, 51, 134
hematologic chemistry, 159, 222, 233
hematologic parameters, 159
Hilltop®, 152
historical control data, 136, 143, 146, 179, 205, 208, 266
hyaline membrane disease, 7
hybrid study design, 14
identification of animals, 155
ear tags, 155, 306
tattooing, 306
transponders, 155
illnesses in children, 31
immune system, 199–200, 260–261
immunogenicity, 17–48, 51, 178
immunoglobulins, 30, 251, 266
immunotoxicity, 103–105, 178, 219, 225, 233, 287
immunotoxicology, 225
Infant Formula Act (1980), 66
infantile autism, 7
influenza vaccine, 6, 85
infusion, 149–151
infusion of test materials, 149–151
in-life toxicological assessments, 192–193
inotropes, 31
Interagency Coordinating Committee on the Validation of Alternative Methods (ICCVAM), 73
interagency interactions, 13
International Conference on Harmonisation (ICH), 42, 72–73, 131, 161, 183, 291
International Life Sciences Institute (ILSI), 17, 137
International Regulatory Board (IRB), 37
intravenous, bolus, 147–149
intravenous delivery, of test article, 147–151
in vitro developmental toxicity tests, 73
Japanese Pharmaceutical Manufacturing Association (JPMA), 13
juvenile animal experiments, 119–124
juvenile animal toxicity studies, 6–9, 69
ADME-related factors, 116–119
age-related exposure differences, case example, 123–124
age-related expression and activity of enzymes in animals, 119–123
assessment between birth and young adult, 14 with biopharmaceuticals, 46, 51–53
dose selection, 46
Food and Drug Administration (FDA) guidance, 12
margin of exposure between animals and humans, 9
nonclinical studies, 7–10, 12
pediatric plan contents, 84–85
practical considerations, 119–124
regulatory requirements, 213–214
special nonguideline studies, 103–108
use in risk assessment for environmental toxicants, 108–109
juvenile development studies, 231–233
juvenile NHP, 257, 266, 275
juvenile toxicity study design, 141–178
testing, 205
juvenile toxicity testing programs, 185
dog, 183, 185, 205
knock in (transgenic mice), 146
knock out (transgenic mice), 146
learning and memory, 165–166
litter effects
between-litter, 154, 187
within-litter, 154, 187
litter logistics (rat), 283–285
locomotor activity, 163–165
Long Evans rats, 146
lungs, 17, 137, 146, 176, 183, 185, 217, 273
lymph nodes, 245–248
lymphocyte subset analysis (in minipigs), 238–241
lymphocyte subsets, 199, 252, 261–263
lymphoid organs (in minipigs), 232–233, 241, 243, 252
Macaca fascicularis, 45
macaque monkeys, 256, 260
Market Authorization Applications (MAAs), 81–84
PIP requirement for, 81
maternal-infant separation (MIS), 151–152
mating behavior, 171, 173–174
maximum tolerated dose (MTD), 138
medicinal adversities, in children, 32
metabolism enzymes, 116
methotrexate, 6
mice, 19, 54, 119, 122, 125, 146–149, 151, 153, 157, 174–175, 178, 217
micro-CT scanning, 157, 204, 271
Micropore™, 152
minipigs, juvenile development in, 69, 231–233
monoclonal antibodies, 42, 45, 233, 238
Morris maze, 167
mortality rates, of juvenile rats and mice, 153
mortality risk, 31
M- or T-shaped maze, 167
multicenter clinical trials, 32
multigeneration studies, 69, 97–98
INDEX

National Commission for the Protection of Human Subjects of Biomedical and Behavioral Research, 5
nebulizer, 190–191
necropsy, 134, 142, 144, 153, 157, 177, 194, 220, 234, 238, 241, 245, 274, 283–286
neonatal Fc receptor (FcRn), 48
neuromuscular system, 216
new drug applications (NDAs), 61–62, 65, 81, 213
nipple evaluation, 161–162
nipple retention, 161–162
nitrous oxide, 31
nonclinical juvenile studies, 214, 281–283
ADME factors, 137–138
age at dosing start/study duration, 137
all systems/adult-identified targets, 136
basic nonclinical study package, 131–132
“combo” study design, 132–134
conditions, 86
dose selection, 138
and early interactions with health authorities, 134
juvenile animal phase, 134
organizational approach to preclinical pediatric studies, 134–136
pre- and postnatal (PPN) phase, 133
species selection, 136
study design, 87–88
timings, 132
toxicity, 13
toxicity testing, 21
US and European Guidelines on animal testing, 86–88
nonclinical pediatric studies, 7–10, 13–21
critical factors in species selection, 19–20
drug testing, 93–109
EMA guidance, 16–17
FDA guidance, 16
of HESI working group, 17
literature reviews, 17
physiologic time, concept of, 13–14
from a preclinical perspective, 13
in preweaning animals, 17
selection of animal model, 14–16
use of juvenile animals, 7–10, 14, 19–20
nonclinical pediatric testing, 67–72
nonhuman primate (NHP), 8, 44, 69, 171, 178, 201, 214, 232, 255–257
nontherapeutic research, 37
oral pediatric formulation, 37
organ system development, comparative ages of, 185
organ systems development, 16, 183–185, 187, 194, 260, 273, 275
orphan drugs, 81
over the counter (OTC) drugs, 59
oxygen retinopathies, 184
parturition, 70, 96–97, 104, 123, 173–176, 222
passive avoidance, 144, 165, 168–169, 308, 312–313
pediatric clinical trials, 5, 8, 32, 50, 53, 55, 61, 71, 74, 81, 85, 132, 257, 293
pediatric disclaimer clause, use of, 2
pediatric diseases
non-childhood-specific diseases, 30
specific, 30
pediatric drug development, see pediatric population
benefits and risks in participating in a pediatric clinical trial, 34–37
biologic license applications (BLAs), 62, 81
for biologics, 43
and cardiovascular instability in preterm infants, 31
challenges in, 8–9
child-friendly dosage forms, 37
clinical considerations, 30–31
and correct dosage delivery, 37
duration of exposure, 9
EMA approach, 12–13
EU legislation for, 43
Food and Drug Administration (FDA) guidance, 12
and gaps in knowledge, 31
for hypotension, 31
ICH guidelines, 42–43
importance of age “sub” classification for safety and efficacy, 33–34
importance of clinical trials, 31–33
JPMA study, 13
juvenile animal toxicity studies, 6–9
legislative changes for pediatric medicines, 3–5
Market Authorization Applications (MAAs), 81–84
nonclinical studies, 7–10, 13–21
off label, 1–2, 8, 30–31, 231, 288
one-generation reproductive toxicity studies, 98–99
oral pediatric formulation, 37
organization, 36
Market Authorization Applications (MAAs), 81–84
nonclinical studies, 7–10, 13–21
oral pediatric formulation, 37
organisation, 36
nonpharmaceutical considerations, 13
oral pediatric formulation, 37
pediatric exclusivity statistics, 65
pediatric investigational plan (PIP), 12–13
pediatric labeled drug products (2002), 66
pediatric plan contents, 84–85
PIP requirement for MAAs, 81–83
PREA requirements, 81–84
prestudy considerations, 11
sales breakdown of pediatric drugs, 66
US and EU regulations, 80–81
use of animal models, 5–12
written request for pediatric studies, 65

pediatric exclusivity, 4, 63, 65, 80, 83, 88–89
Pediatric Investigation Plan (PIP), 9, 81, 232
pediatric population, see also pediatric drug development
absorption of compounds, 116–117
antihypertensive trial, 33
blood–brain barrier, 3
blood pressure control study, 33
bone growth and antibiotics, 67
diseases observed, 2
distribution of compounds, 117
drug metabolism mechanisms, 117–119
drugs exhibiting toxicities in, 6
drug spending in, 31
fatal toxic syndrome in neonates, 67
glomerular filtration rate, 119
hepatic bile formation and secretion, 117
intestinal enzyme activity, 117
kinetic differences between children and adults, 3
legislative changes for pediatric medicines, 3–5
renal and hepatic clearance mechanisms, 3
toxicities in, 66–67
treatment of cardiac arrhythmias, 33
pediatric population subgroups, defined, 71
Pediatric Research Equality Act (PREA), 5, 43, 63–64, 80–81, 83–84, 89, 213
pediatric rule, 62–63
Pediatric Testing, 59–75
pediatric use marketing authorization (PUMA), 75
peri-postnatal study, 154
pesticides, 94, 103, 105, 107, 141
pharmacodynamics (PD), 33, 89, 132, 265
pharmacokinetics (PK), 7, 33, 89, 116, 124, 132, 143–145
Pharmacology-Toxicology Coordinating Committee (PTCC), 69
phenylketonuria, 4
physical development, 100, 155–157, 161, 186, 189, 193, 224, 226–227, 298
air righting, 161
eye opening, 161
preweaning landmarks, 161
physical landmarks, 161
physiologic time, 13
physiologic time, concept of, 13–14
comparison of age categories by species, 15
FDA/EMA organ systems, 18
poisoning of children, 61, 67
positive control groups, 143, 153
postdosing development period, 188
postnatal organ system development, of laboratory animals, 187
postnatal phase definitions, across species, 130
postweaning landmarms, of sexual development, 162
pre and postnatal development, 13, 49, 73, 131, 257, 259–260, 266
preclinical development, 129–138
preclinical pediatric studies, 134–136
pregnancy labeling, 69
Pregnancy Task Force Working Groups, 69
pre-Investigational Drug (pre-IND) meetings, 65
pre-postnatal development, 14, 86, 130
pre-weaning mammals, nonclinical studies in, 17–19
primate pediatric model examples, 273–274
general considerations, 255–257
organ systems and functions, 260–273
postnatal development phases and terminology, 257–260
propylene glycol, 67
proton pump inhibitors, 185, 188–189
pulmonary system, 200
QT lengthening, 32–33
quinolone antibiotics, 184
rat juvenile toxicity testing approach to dose-range-finding, 289–293
dose selection consideration, 288–289
planning for, 282–283
study design, 283–288
Redbook I and II (US FDA), 68–69
regulatory agencies, 9, 34, 79, 88, 142–143, 185, 288
regulatory requirements, 79, 129, 132, 213–214
reproduction and fertility, 97–98
cesarean sectioning procedures, 174–175
estrous cycling, 171–173
evaluation of pups at birth, 176
evaluation of tissues for macroscopic and microscopic lesions, 177
fetal evaluation, 175
mating performance, 173–174
necropsy examination, 177–178
neurohistopathological examinations of CNS-active compounds, 177–178
observation and timing of parturition, 175–176
sperm production, 174
reproductive system, 17, 99, 137, 173, 218, 259, 283
reproductive toxicity screening studies, 96–97, 275, 283
retinopathies, oxygen, 184
retinopathy, 4, 35, 184
Reye’s syndrome, 4, 32
risk assessment, 94–96, 103, 105, 108–109
risk/benefit, 3
routes of exposure, 147–152
bolus delivery, 147–149
dermal, 151–152
dosage volumes for neonates, 148
dosing needles, 147
exposure room, 152
gavage, 147, 149
infusion of test materials, 149–151
inhalation, 152
intravenous, 147–151
restrained tubes, 147
skin application site, 152
subcutaneous/intramuscular, 151–152
safety assessment, 41–55
safety testing, 50, 60–61, 213–215, 217
sexual maturation, 35, 98, 101–102, 136, 144, 162, 186, 218, 224, 258
skeletal system, 202–205
small molecule therapeutics, 43–45, 50
sotalol, 33
species cross reactivity, 44–46
species selection, 19t, 44, 45, 50, 86–88, 90, 96, 134, 136, 214
sperm collection, 174
spleen, 245
Sprague Dawley rats, 156–157
study designs, 17, 54, 94
combo, 132–134
of developmental neurotoxicity (DNT) study, 100
of a dog study, 186–189
of juvenile animal study, 87–88, 136–138, 144
of juvenile toxicity for the rodent and rabbit, 141–178
of minipig, 233
of NHP juvenile toxicity, 273–275
PPN, 131–132
routes of exposure, 147–152
and testing strategies, 219–222
timing of first exposure, 145–146
of toxicokinetic studies, 108
when to use mice, rats, or rabbits, 146–147
subcutaneous/intramuscular routes of exposure, 151–152
sulfur drugs, 4
sulfanilamide poisoning (1937), 61
surfactant, 4, 31
surrogate molecule, 49, 146
swine (test model), 17
advantages and disadvantages, 215
elements, 226–227
postnatal developments, 215–219
regulatory requirement, 213–214
study design, 219–222
study performance, 222–225
systolic blood pressure (SBP), 33
tail tattooing, 155
targets
all systems/adult-identified, 136
organ toxicity, 11–12, 132, 143
teeth staining, 32
testing strategy, 219–222
tetracyclines, 32, 67
thalidomide, 61, 67
tragedy (1950s and 1960s), 67
therapeutic agent, 2, 16, 31, 33, 131
therapeutic benefit, 62
therapeutic orphans, 2–3
therapeutic research, 36
thyamus, 105, 194–195, 241–242, 260
tolerability, 7
torsade de pointe (TdP), 32–33
toxicity parameters, 153
transgenic mice, 146
transporters, 119–123
treatment period, 188, 218, 220–221, 287–288
United States Pharmacopeia (USP), 60
vaccines, 42–43, 59, 66, 71, 84, 145, 178
valsartan, 33
watermaze negotiation, 167–168
weaning animals, 14, 124, 144, 153–157, 162, 165, 186–190, 192, 199
in developmental immunotoxicity (DIT) studies, 104
in developmental neurotoxicity (DNT) study, 100
and drug-disposition protein, 122
in juvenile animal phase, 134
in multigeneration reproduction study, 97–98
in one-generation reproductive toxicity study, 98–99
pigs, 215–216, 222, 224, 234
in PPN phase, 133
within-litter design, 154, 187