Index

A
Abandoned coal mine lands, 132, 133
Abandoned Mine Land (AML) tax fund, 130, 132, 133
Abandoned wells:
 environmental impact of, 59
 environmental threats from, 48–53, 62
 identifying status of, 235–236
 leakage of sequestered CO₂ through, 56, 57, 231
 locating/handling, 52–54
 in the United States, 51–54
Abandonment, of offshore oil and gas platforms, 37–39
Abandonment plan, 37
ABB Lummus Crest Inc., 273
ABB Lummus Crest Power Plant (Trona, California), 269–270, 273–274
Absorption, for CO₂ capture, 266, 271
Accidents, environmental damage from, 3
Accidental oil spills, 173. See also Oil spills
Acetic acid, 23
Acid gases, in Selexol process, 267, 273
Acidizing, well stimulation by, 22–23
Acrylic polymers, as gelling agent, 23
Activated potassium carbonate process, 269
Adsorption processes, for CO₂ capture and removal, 266, 271
Age of Oil, 58
Aggregation, of oil spills, 189
Agro-toxins, 26
Air (atmosphere):
 concentration of CO₂ in, 229, 232
 leakage of sequestered CO₂ into, 229, 230
Air (atmospheric) pollution:
 from petroleum, 14–15, 17
 from plugged wells, 50
 from shipping emissions, 164
 from ships at berth, 144, 164–169
 from stored CO₂ leakage, 55, 56
 and Wilmington oil field, 44, 47
Alberta, oil sands operations in, 103, 117–124
Alcohols, as gelling agents, 23
Aldehydes, 22
Aliphatic hydrocarbons, as gelling agent, 23
Alkalibenzines, 26
Alkyl amines, in acidizing wells, 23
Alkyl phosphonates, in acidizing wells, 23
Alkyl sulfonates, in acidizing wells, 23
Allothermic coal gasification, 246
American Petroleum Institute (API), 29
Amines, as gelling agent, 23
Amine acetate salts, 22
Amine scrubbing, for coal-fired power plants with CO₂ capture, 282
AML tax fund, see Abandoned Mine Land tax fund
Ammonium bisulfate, 22
Angola, oil spill in, 179
Annular injection of solid wastes, 33
Annular seals, integrity of, 31–32, 50
Anthropogenic CO₂ release, 28–29
Anthropogenic greenhouse gases, 208
Anthropogenic petroleum pollution, 13, 15
API (American Petroleum Institute), 29
Appalachia, coal mining in, 129
Applicant/Violator System (AVS), 131–132
Aquicludes, 211–212
Aquifers:
 CO₂ storage in, 54, 210, 212. See also Carbon dioxide sequestration
defined, 211
geology of, 211–212
storage capacity of, 217–219
Aquitards, 211, 212
Aromatic hydrocarbons, toxicity of, 194
Artificial drilling islands, 44, 45, 47, 48
Asia, coal gasification in, 258
ATB, see Atmospheric-topped bitumen
Atmosphere, see Air
Atmospheric pollution, see Air pollution
Atmospheric-topped bitumen (ATB), 111, 114
Australia, coal gasification in, 258
Automatic shut-off valves, at Wilmington oil field (California), 48
Autothermic coal gasification, 246
AVS (Applicant/Violator System), 131–132

B
Barriers:
in drilling, 31
in production/injection, 31
Base fluids, in hydraulic fracturing of wells, 23
Battle carbon management electricity model (CMEM), 279
Beaches, oil spill cleanup for, 191
Bingham, Nancy, 128, 140
Biodegradation (oil spills), 189–191
Bioremediation (oil spills), 190–191
Biostimulation (oil spills), 191
Bitumen:
diluted, 110
key properties of, 93
Bitumen extraction, 89–92, 103
energy used in, 88
modeling, 109–110
in oil sands case study, 118–119
by steam-assisted gravity drainage, 91–92, 104, 110–111, 119–120
Bitumen production:
case study of, 117–124
energy availability for, 88
Bitumen recovery levels, 88, 109–110
Bitumen upgrading, 92–97, 103
energy in, 88, 97–102
greenhouse gas emissions from, 122
for marketing, 88
modeling, 103, 111–114
in oil sands case study, 119–120
processes for, 93–97
products of, 93, 94
Black gold, 3, 58
Block valves, in pipelines, 232
Blowouts, see Well blowouts
Blowout preventers (BOPs), 31, 47–48
Booms, for oil spill containment, 191
BOPs, see Blowout preventers
Breakers, in hydraulic fracturing of wells, 24
Brine, from abandoned wells, 51, 52
Brine injection, subsurface, 32
Brundtland Commission, 136
Buffalo Creek, West Virginia, empoundment failure, 128, 129
Burning, for oil spill cleanup, 193
Buzzard’s Bay oil spill, 174

C
CAA (Clean Air Act of 1963), 131
Caddo Pine Island Field (Louisiana), 53, 54
California:
 Cool Water IGCC plant in, 259
 environmentally conscious petroleum engineering in, 42–48
California Department of Conservation, 42–43
Canada, IGCC status in, 259–261
Canary Islands, oil spill in, 179
CANMET Energy Technology Center, 260
Caprock:
 integrity of, 226, 235
 permeability of, 225
Carbon (CO₂) capture and storage (CCS).
 See also Carbon dioxide capture;
 Carbon dioxide sequestration
in electric power generation, 278, 279. See also Carbon mitigation in electric power generation in oil sands operations, 88
Carbon density, of fossil fuels, 34
Carbon mitigation in electric power generation, (continued)
and CO₂ sequestration location, 293
constraints on, 288–295
cost calculation for, 287–288
and cost of electricity, 300–302
and effect of natural gas price on COE, 307–309
effects of strategies for, 299–300
and electricity demand distribution, 302–307
and energy balance/demand satisfaction, 289
and energy balance on capture process, 289
and fuel selection/plant shutdown, 290
illustrative case study, 295–301
logical constraints on, 295
and lower bound on operational constraints, 291–292
models for, 278–281
and plant capacity constraints, 290
and selection of new power plants, 292
superstructure representation, 282–287
and upper bound on operational changes, 290–291
Carbon monoxide, from coal gasification, 246
Carbon sequestration, 210–211. See also Carbon dioxide sequestration
Casing:
corrosion of, 51
pressure testing of, 32
regulations for, 71–79
Casing pipes, 6
corrosion of, 58
regulations related to, 31, 32
Cathodic casing protection system, 51
Caverns:
CO₂ storage in, 210
liquefied hydrocarbon storage in, 221
CBL (cement-bond log) tests, 31
CCS, see Carbon capture and storage
Cement-bond log (CBL) tests, 31
Cementing regulations, 31, 32, 71–79
Cement-plug deterioration, 50
Cement slurry, vibration of, 50
Central tank farms (CTFs), 8
CERCLA (Comprehensive Environmental Response, Compensation, and Liability Act of 1980), 130–131
CFCs (chlorofluorocarbons), 208
CH₄, see Methane
Channeling, 50
Char combustion, in coal gasification, 245
Char gasification, in coal gasification, 245
Chemical absorption systems, for CO₂ capture, 269
Chemical flooding, in petroleum production, 24–25
Chemical injection, environmental impact of, 59
Chemical solvents, for CO₂ capture, 266, 269
China:
carbon consumption in, 127
carbon gasification in, 258
carbon reserves in, 127
environmental impact of coal mining in, 128
Chlorine compounds, 22
Chlorofluorocarbons (CFCs), 208
Christmas tree, 8
Clean Air Act (1963) (CAA), 131
Clean Air Act Amendment (1990), 129
Clean coal technologies, 244
carbon dioxide capture and removal, 264–274
carbon gasification, 243–253
integrated coal gasification fuel cell combined cycle, 263–264
integrated gasification combined cycle, 253–263
Cleanup operations, for accidental oil spills, 181, 190–194
Clean Water Act (1972), 66–67, 131
Climate change, 28–29, 277
CMEM (battle carbon management electricity model), 279
CO₂, see Carbon dioxide
Coal, 127–128, 243
availability of, 253
burning, 244
for electric power generation, 133–134, 253, 264
forecasted increase in use of, 3
integrated approach to use of, 137–139
world consumption of, 127
Coal Association of Canada, 260
Coal combustion, 244
Coal-fired power plants, 133–135, 244, 264, 281, 282
Coal gasification, 243–264
c oal combustion and, 244
commercial processes for, 250–253
defined, 244
fundamental reactions in, 245–246
integrated coal gasification fuel cell combined cycle, 263–264
integrated gasification combined cycle, 253–263
techniques for, 246–250
Coal mining, 127–140
current environmental regulations for, 129–132
environmental achievements in, 132–136
future of, 137–140
historical environmental performance in, 129
issues in, 128
OSM 2006 annual report on, 132
sustainable developmental principles for, 136–137
Coal reserves, 127
COE, See Cost of electricity
Coke, from bitumen upgrading, 95, 112–113
Coke to ammonia gasification project (Kansas), 272–273
Coking processes (bitumen upgrading), 93, 95–96, 112–113
Combined cycle power plants, 314–315
integrated coal gasification fuel cell, 263–264
integrated gasification, 100–102, 134, 135, 244, 253–263
natural gas, 100, 101, 105, 116, 313–333
Commodity flow information, 140
Compaction monitoring instruments, 45–46
Completion of wells, regulations for, 71–79
Comprehensive Environmental Response, Compensation, and Liability Act (1980) (CERCLA), 130–131
Contingency plan, for CO2 sequestration, 236
Conventional oil sands mining, 89–90
Cooling towers, 24–25
Cornwall, England, oil spill, 179
Corrosion:
of casing, 51, 58
of production equipment by produced water, 21–22
Corrosion control, 22
Cost:
of carbon mitigation in electric power generation, 287–288. See also Cost of electricity
of coal vs. natural gas, 243–244
of oil spills, 41
Cost of electricity (COE):
effect of CO2 reduction on, 300–302
incremental cost of CO2 reduction and, 279
and natural gas price, 307–309
Crude oil, 2, 175–176
processing of, 8
products derived from, 176–177
spills of, 175. See also Oil spills
Cryogenic technologies, for CO2 capture and removal, 266, 271–272
CTFs (central tank farms), 8
Curry, William H., 43
Cuttings reinjection, 33, 58, 59

D
Decommissioning, of offshore oil and gas platforms, 36–39
Deep-water dumping, of offshore platforms, 38
Delayed coking process, 95–96
Demand-side management (DSM), 280
Demulsifiers, in acidizing wells, 23
Density, CO₂, 214–216, 220
Derating, 289, 297
Desalination plants, 153
Deterding, Sir Henri Wilhelm
 August, 3
Devolatization, in coal gasification, 245
Dewatering, of drilling fluids, 19–20
Diagenesis, 225–226
Diesel engines, 164
Diesel oil, 2, 19
Directional drilling, in Wilmington oil field, 44
Dispersants, for oil spills, 192
Dispersion, of oil spills, 185, 186, 194
Disposal of offshore platforms, 37–39
Dissolution, of oil spills, 186–188, 194–195, 197, 202–203
Dissolved oxygen, corrosion caused by, 21–22
Dissolved-salt concentrations, in petroleum-polluted water, 16
Diverter additives, in hydraulic fracturing of wells, 24
Down-dip water flow, in CO₂ sequestration projects, 233–234
Downstream petroleum industry, 5
Drake Day, 2
Drilling, petroleum:
 barriers in, 31
 environmental damages from, 17–20
 environmental impact of, 59
 muds used in, 16, 29
 regulations for, 71–79
Drilling fluids:
 damage from and remedies for, 58
 for oil and gas wells, 17, 19–20
 to prevent blowout, 31
 treatment of, 19–20
Drilling muds, 16, 29
 oil-based, 29, 30, 33
 water-based, 16, 29, 30
Drilling permit regulations, 31
Driving
 force-pressure-state-impact-response models (coal industry), 139
DSM (demand-side management), 280

E
EC₅₀, 16
ECBM, supplying CO₂ for, 88
Ecology, 12
EIA, see Environmental impact assessment
Electrical conductivity, of oil in seawater, 145–147
Electricity, forecasted use of, 3
Electricity demand distribution, CO₂ reduction and, 302–307
Electric power generation. See also specific types of power plants
carbon mitigation in, 277–310
coal use for, 133–134, 253, 264
greenhouse gas emissions from, 313–314
Emplacement (offshore platforms), 38
Emulsification, of oil spills, 187–188
Emulsification in situ (bitumen extraction), 91
Endangered Species Act (1973), 131
Energy analysis, of NGCC generation unit, 317–320
Energy consumption, forecasted increase in, 3
Energy demands, 2
 for CCS, 281
 for oil sands operations, 88, 89, 115
 in oil sands operations modeling, 106–115
 in SCO/bitumen production case study, 117–122
Energy infrastructure, 89
Energy models, 278–281
Energy production, in oil sands industry, 89, 97–102, 105
Energy reserves (petroleum), 2
Energy supply, for oil sands operations, 89, 115–116
Energy Technology Perspectives (ETP) model, 279
Enhanced oil recovery (EOR), 24–25, 210
CO₂ injection in, 34–35
CO₂ sequestration with and without, 221
 environmental impact of, 59
supplying CO₂ for, 88
Enron Corp., 262
Entrained-bed gasification, 246, 249
Environment, defined, 12
Environmental awareness, drivers of, 27–29
Environmental compliance:
drivers of, 27–29
in oil and gas industry, 26–29
and seawater discharges, 30
Environmental controls:
in coal mining, 132–136
at Wilmington oil field, 46
Environmental damages. See also Pollution
from coal mining, 129
interrelated factors in, 12
from oil refinery and petrochemical industries, 25–26
from oil spills, 41, 190
from petroleum drilling, 17–20
from petroleum exploration and transportation, 3, 4, 16–17
from petroleum production, 3, 4, 16–17, 20–25
Environmental footprints, of drilling rigs, 17, 18
Environmental impact:
of coal mining, 129
of coal use, 128
of oil sands operations, 88–89
of oil spills, 143–145
of petroleum, 12–15
of petroleum extraction, 58–60
of petroleum wastes, 15–16
of produced water from petroleum production, 21
of reserves pits, 20
Environmental impact assessment (EIA), 3, 42
Environmentally conscious petroleum engineering, 30–62
barriers in drilling, 31
barriers in production/injection, 31–32
in California, 42–48
CO₂ sequestration, 33–35
cuttings reinjection in, 33
and decommissioning of offshore platforms, 36–39
and impact of petroleum extraction, 58–62
and integration of EIA and environmental management, 42
long-term CO₂ storage monitoring in, 54–57
and progress in environmental compliance, 39–42
and threats of abandoned wells and fields, 48–54
Environmental management, integration of EIA and, 42
Environmental problems, defined, 12. See also Environmental damages
Environmental Protection Agency (EPA), 179–180
Environmental threats, from abandoned wells and fields, 48–54
EOR, see Enhanced oil recovery
EPA (Environmental Protection Agency), 179–180
E&P industry, see Exploration and production industry (petroleum)
Estasolvan, 267
ETP (Energy Technology Perspectives) model, 279
Evaporation, of oil spills, 175, 186, 188, 195, 196
Exergy analysis, 315, 320–322
Exergy destruction/loss rate plots, 329–332
Experimental wells, for CO₂ sequestration, 233
Exploration and production (E&P) industry (petroleum), 5
in California, 42–48
environmental damage from, 3, 4, 16–17
environmental impact of, 59
integration of EIA and environmental management, 42
progress in environmental compliance, 39–42
External integrity, of annular seals, 32
Index

Exxon Valdez oil spill, 3, 4, 27, 41, 178, 185, 186, 193

F
Farmland Industries coke to ammonia gasification project (Kansas), 272–273
Fathead minnows, toxicity testing with, 15–16
Faults, locating and mapping, 234
Faulted zones, leakage of sequestered CO2 in, 230
Fluid coking, 96
Fluid cross-flow, 50
Fluid discharges:
 environmental regulations on, 29
in offshore drilling, 30
Fluid-filtration control additives, in hydraulic fracturing of wells, 24
Fluidized-bed gasification, 246, 248–249
Fluor Solvent, 267
Formation pressure (CO2 sequestration), 214–215
Formation temperature (CO2 sequestration), 214–215
Formation volume factor (CO2), 217, 219
Formation waters, 212
 hydrodynamics of, 233–234
 identifying chemistry of, 233
 permeability of, 218, 219
 solubility of CO2 in, 216, 218
Formic acid, 23
Fossil fuels:
 carbon density of, 34
 dependence on, 2
Fossil fuel power plant emissions, 277, 278. See also Carbon mitigation in electric power generation
Frac-packing, 29–30
France, oil spill in, 179
Freshwater:
 abandoned wells and pollution of, 51, 52
 hydrostatic pressure gradient for, 215
Fuel cells, 263. See also Integrated coal gasification fuel cell combined cycle
Fuel switching, in fossil fuel power plants, 278
Furnace and bunker oil, 2

G
Galicia, Spain, oil spill, 182, 183
Gas absorption membranes, 270–271
Gasification:
 of coal, see Coal gasification defined, 244
 of hydrocarbons, 98–99
 of petroleum, 259, 260
Gas migration, 50
Gasoline, 2
Gas-phase reactions, in coal gasification, 245
Gas reservoirs:
 CO2 storage in, 33–35, 54
 natural gas storage in, 221
Gas separation membranes, 270
Gas turbines, heat recovery steam generators combined with, 314–315. See also Natural gas combined cycle plants
Gas wells:
 abandoned, environmental threats from, 48–54, 62
 unplugged, 51–52
 wastes from, 17
Gathering stations, 8
Gechtel Canada Inc., 260
Gelling agents, in acidizing wells, 23
General Mining Act (1872), 129
Generation planning problem (GPP), 281
Geneva Convention on the Continental Shelf (1958), 37
Geographic information system (GIS), in monitoring of oil spills, 182
Geological heterogeneity, 225–226
Geological mapping, for CO2 sequestration, 233
Geo-storage of CO2, 54–57, 209–210. See also Carbon dioxide sequestration
Geothermal temperature gradient, 215
Gesner, Abraham, 2
GHG emissions, see Greenhouse gas emissions
GIS, in monitoring of oil spills, 182
Global Mining Initiative, 136
Global warming, 15, 28–29, 61
and CO₂ emissions, 277
consequences of, 209
and emissions from ships, 164
and greenhouse gases, 208–209
Glycol ether, as demulsifier, 23
Goal programming (GP), energy model
based on, 280
GPP (generation planning problem), 281
Greenhouse effect, 208–209
Greenhouse gases, 208. See also specific
Gases
Greenhouse gas (GHG) emissions, 61, 208
from coal-fired power plants, 133, 134
from coal industry, 139
control and reduction of, 209–210. See
also Carbon dioxide sequestration
and global warming, 208–209
in IGCC power plants, 257
Kyoto Protocol for, 10
from oil sands operations, 88. See also
Oil sands operations modeling
in SCO/bitumen production case study,
122–124
from ships, 144–145, 164
Groundwater:
pressure gradient for, 215
protection of, during oil and gas
drilling, 17
Groundwater contamination/pollution:
from abandoned wells, 53
from CO₂ sequestration, 229
environmental impact of, 59
from plugged wells, 50
from unplugged wells, 52
Guiding Principles for Environmentally
Responsible Petroleum Operations
(API), 29
Gulf of Mexico, oil spill in, 179
Gulf War, oil spill during, 177
Gushers, 17, 18
H
H₂S, see Hydrogen sulfide
Haven oil spill, 178
Health, safety, and environment (HSE)
practices, 28
Heating oil, 2
Heat recovery steam generators (HRSGs):
combined with gas turbines, 314–315.
See also Natural gas combined
cycle plants
supplementary firing in, 315–317,
319–320, 324–325
Heavy gas-oil (HGO), 111–114
Heavy metals:
in drilling fluids, 19
from petrochemical industry, 26
from petroleum, 16
HEM (hexane extractable materials), 30
Heterogeneity, geological, 225–226
Hexane extractable materials (HEM), 30
HGO (heavy gas-oil), 111–114
High-heating-value gases, 245
High-temperature fuel cells, 263
Historic Landmark and Historic District
Protection Act (1978), 131
Homogeneity of reservoirs, injection rate
and, 225–226
Hot air injection, in oil recovery
operations, 25
Hot water process (HWP), in oil sands
operations, 90–91
HRSGs, see Heat recovery steam
generators
HSE (health, safety, and environment)
practices, 28
Humble Oil, 43
HWP, in oil sands operations, 90–91
Hybrid solvents, for CO₂ capture, 266
Hydraulic fracturing:
environmental impact of, 59
well stimulation by, 23–24
Hydrazine, 22
Hydrocarbons:
chemical absorption of, 269
and CO₂ injection rate, 227–228
and CO₂ sequestration, 229–230
in crude oil, 175–177
dissolution rates in water, 194
effects of, 16
gasification of, 98–99
Hydrocarbons: (continued)
underground storage of, 55
Hydrocarbon industry, see Petroleum industry
Hydrochloric acid, 23
Hydrocracking processes (bitumen upgrading), 93
Hydrodynamics, of formation waters, 233–234
Hydrofluoric acid, 23
Hydrogen:
for bitumen upgrading, 98–100, 117
and CO₂ pipeline capacity, 220
from coal gasification, 246
Hydrogen sulfide (H₂S):
corrosion caused by, 21–22
in oil sands power production, 102, 104, 105, 123
in Selexol process, 273
Hydrostatic pressure gradient, for freshwater, 215
Hydrotransport:
in oil sands case study, 118
in oil sands industry, 89, 90
in oil sands operations modeling, 103, 108–109
Hydrotreating processes, in bitumen upgrading, 93, 112, 113
Hydroxyethyl cellulose, as gelling agent, 23
Industrial hazardous waste generation, from petroleum refining, 11
Industrial Source Complex Short Term (ISCST) model, 165, 167
Injection, 221
backflow of CO₂ during, 231
barriers in, 31–32
CO₂, 33–35, 55, 221–223. See also Carbon dioxide sequestration
of drilling solid wastes, 33, 58, 59
Injection capacity, calculating, 221–223
Injection permit regulations, 31
Injection rate (CO₂ sequestration):
and caprock integrity, 226
and CO₂ migration, 227
and homogeneity of reservoir, 225–226
and hydrocarbon occurrences, 227–228
monitoring, 229
parameters influencing, 223
and permeability, 225
and porosity, 224
and reservoir thickness, 224
and viscosity, 225
and well-bottom pressure, 223–224
Inlet temperature (gas turbines), 327–328
Insecticide, Fungicide and Rodenticide Act (1973), 131
In situ bitumen extraction, 89, 91–92, 103
Inspectable coal mining operations/activities, 132
Integrated coal gasification fuel cell combined cycle (IGFC), 263–264
Integrated environmental control model (IECM), 278–279
Integrated gasification combined cycle (IGCC) plants, 100–102, 134, 135, 244, 253–263, 278
advantages of, 256–258
with carbon capture, 278
CO₂ removal in, 265
with cold gas cleanup, 255
commercial projects, 261–263
cost of CO₂ capture for, 282
with hot gas cleanup, 255–256
process used in, 254–256
state of development, 258–261

I
Idle oil/gas wells, 49
IECM (integrated environmental control model), 278–279
IGCC plants, see Integrated gasification combined cycle plants
IGCC with carbon capture (IGCC+CCS), 278
IGFC (integrated coal gasification fuel cell combined cycle), 263–264
IIED (International Institute for Environment and Development), 136
IMO, see International Maritime Organization
technology for, 253–254
Internal mechanical integrity, of borehole installations, 32
International Institute for Environment and Development (IIED), 136
International Maritime Organization (IMO), 37, 38
ISCST model, see Industrial Source Complex Short Term model
Italy, oil spill in, 179

K
Kandanwari, Pakistan, 274
Kerosene, 2
Kerr-McGee Chemical Corp, 273
Kholmsk, Sakhalin Island, oil spill, 27, 28
Koppers-Totzek gasifier, 250
Krupp-Koppers, 250
Kuwait, oil spill in, 177, 178, 193
Kyoto Protocol (1998), 10, 61, 277–278

L
Land pollution:
from oil spills, 189
from petroleum, 12–14
Land subsidence:
environmental impact of, 60
in Wilmington oil field, 43–44, 46–47
LC50, 16, 30
LC-Fining process, 96, 97, 111, 113–114
Leakage of sequestered CO2, 55–57, 229–231
Least-cost strategies, for GHG emission reduction, 281
Light gas-oil (LGO), 111–114
Linear programming (LP) energy models, 279, 280
Liquid scrubbing, for CO2 capture, 266
Load balancing, in fossil fuel power plants, 278
Long Beach, California, production operations, 43–48
Long Lake project (Opti-Nexen), 110
Louisiana, abandoned wells in, 53, 54
Low-heating-value gas, 245
Low-temperature fuel cells, 263
LP energy models, see Linear programming energy models

M
Manmade drilling islands, see Artificial drilling islands
Marine environment protection case study, 152–163. See also Oil spill detection case study
designed system for, 153, 154
experimental procedure in, 156–159
results of study, 159–163
switch device in, 153–156
Marine Protection, Research and Sanctuaries Act (1972), 131
Marine waters, oil spills in, 12–14
Maritime oil transport case studies, 143–170
detection of oil spill in seawater, 144–152
oxides of nitrogen emissions from ships at birth, 164–169
protection of marine environment, 152–163
Maritime vessels, for oil transport, 5, 6
MARKAL model, 281
Material flows analysis, in coal industry, 137–139
MEA process, see Monoethanolamine process
Mediterranean sea, oil spills in, 177
Medium-heating-value gas, 245
Membranes, for CO2 capture and removal, 266, 270–271, 274
Methane (CH4), 208–209
and CO2 pipeline capacity, 220
from coal gasification, 246
from deep coal seams, 210
Mexico, oil spill in, 179
Michigan Basin, 223–225
Microbial degradation, of oil spills, 189, 190
Middle East, oil spills in, 178
Middlings (hot water process), 90, 91
Mineral trapping, 213–214, 235
Mining:
 of coal, see Coal mining
 in oil sands case study, 117–118, 123–124
 in oil sands industry, 89–90, 103
 in oil sands operations modeling, 107–108
Mobil, 43
Mobility, in CO₂ storage, 219
MOLP (Multiple Objective Linear Programming) model, 280
Molten-bath gasification, 250
Monitoring:
 of accidental oil spills, 182–184
 of CO₂ sequestration, 54–57, 228–230, 236
Monoaromatics, 26, 194
Monoethanolamine (MEA) process:
 at ABB Lummus Crest Power Plant, 273–274
 for CO₂ capture and removal, 269–270, 273–274
 for coal-fired power plants with CO₂ capture, 282
MST, see Mysid shrimp toxicology
Muds, see Drilling muds
Multiple Objective Linear Programming (MOLP) model, 280
Mysid shrimp toxicology (MST), 15, 30

N
Naphtha solvent, in bitumen upgrading, 103, 111–114
National Environmental Protection Act (1970), 131
National Pollution Discharge Elimination System (NPDES) permits, 131
National Response Center (NRC), 180
Natural gas, 2
 carbon mitigation and price of, 307–309
 cost of, 243
 forecasted increase in use of, 3
 production and processing of, 6–10
 storage of, 221
Natural gas combined cycle (NGCC) plants, 100, 101, 105, 116, 278, 313–333
 with carbon capture, 278
 and electricity demand distribution, 303–307
 gas turbine inlet temperature, 323–324, 327–328
 gas turbine pressure ratio, 325–327
 generation unit exergy plots, 329–332
 operating parameters and performance of, 323
 supplementary fuel firing, 324–325
 thermodynamic analysis of generation unit, 316–322
Natural gas pipelines, 5
Natural gas power plants. See also
 Natural gas combined cycle plants
 carbon dioxide from, 244, 264
 retrofitting CCS on, 281
Natural gas steam reforming, 98, 105
Naturally occurring radioactive materials (NORM) disposal, 33
New England Generation Planning Task Force, 281
Nexen Inc, 89
NGCC plants, see Natural gas combined cycle plants
NGCC with carbon capture (NGCC+CCS), 278
Nitrogen:
 and CO₂ pipeline capacity, 220
 in coal gasification, 244
 in IGCC systems, 255, 256
Nitrogen oxides, from ships at berth, 164–169
Nitrous oxides, 208, 209
NOEC (No Observable Effect Concentration), 16
Noise pollution, Wilmington oil field and, 47
Nonslagging gasification processes, 246
No Observable Effect Concentration (NOEC), 16
NORM (naturally occurring radioactive materials) disposal, 33
North America:
coal for electricity generation in, 264
coal gasification in, 258, 259

North Sea:
disposal of platforms in, 38
offshore platforms in, 36
oil spill in, 179
Sleipner Vest gas field, 221
NPDES permits, 131
NRC (National Response Center), 180

O
O₃ (ozone), 208
OBMs, see Oil-based muds
Odyssey oil spill, 179
Office of Surface Mining and Reclamation Enforcement (OSM),
129, 131–132
Offshore oil and gas platforms, 12
abandonment process for, 37–38
decommissioning of, 36–39
typical designs of, 36
Offshore wells:
annular injection of wastes, 33
frac-packing of, 29–30
Ohio, abandoned wells in, 52–53
Oil, 2
Oil and gas industry, see Petroleum industry
Oil-based muds (OBMs), 29, 30, 33
Oil Conservation Board, 27, 28
Oil drilling, 17
environmental damages from, 17–20
muds used in, 16, 29, 30, 33
solid wastes from, 20
Oil fields:
abandoned, environmental threats of, 48–54
defined, 12
environmental damage from and remedies for, 58
regulation of, 52
Oil pipelines, 5
Oil Pollution Act (1990) (OPA), 14, 41, 69–70, 180
Oil production, 3, 4, 12, 16–17

Oil refining:
environmental damages from, 25–26
technologies for, 5

Oil reservoirs, CO₂ storage in, 33–35, 54, 221

Oil sands industry, 87–102
bitumen extraction, 89–92
bitumen upgrading, 92–97
energy production, 97–102
growth strategies for, 88
SCO and bitumen production case study, 103, 117–124

Oil sands operations modeling (OSOM), 102–117
bitumen extraction, 109–110
bitumen upgrading, 111–114
CO₂ emissions, 116–117
energy supply, 115–116
hydrotransport, 108–109
mining, 107–108
process flow diagram and assumptions, 105–107
SAGD extraction, 110–111
total energy demands, 114–115
Oil Sands Technology Roadmap, 117
Oil seeps, 2
Oil spills, 3, 4, 143–144, 173–203. See also Maritime oil transport case studies
causes of, 144, 173, 177
classification of, 182
cleanup of, 174, 175, 181, 190–194
and corporate image, 42
detection of, 144–152, 182
in early days of drilling, 17
emergency containment for, 47
environmental impact of, 143, 144
fate and behavior of, 184–189
largest, 178–179
in marine waters, 12–14
methods of dealing with, 174
modeling and simulation of, 194–203
monitoring of, 47, 182–184
nature of, 175–177
prevention of, at Wilmington oil field, 47–48
Oil spills, \textit{(continued)}

- real and pseudocomponents of, 197, 198
- reporting and response programs for, 179–182
- trends in, 40–41
- use of term, 173
- wildlife injured by, 181–182
- worldwide occurrences of, 177–179

Oil spill detection case study, 144–152
- and electrical conductivity, 145–147
- final experimental design for, 151–152
- final operative real-time design system for, 147–150
- preliminary design system for, 146–147
- preliminary experimental design for, 150–151

Oil Spill Fund, 180

Oil spill modeling and simulation, 194–203
- background of, 194–195
- calculation of parameters, 198, 199
- prediction and results, 198, 200–203
- scheme and method for, 195–198

Oil tankers, 14, 179

Oil wells:
- abandoned, environmental threats from, 48–54, 62
- unplugged, 51–52
- wastes from, 17

Oklahoma, abandoned wells in, 51, 52
Oklahoma Corporation Commission, 52
One-time crop, petroleum as, 61
Onshore disposal of platforms, 38

Ontario Power Generation company (OPG), 295–299

OPA, \textit{see} Oil Pollution Act (1990)
Open-pit brine skimming systems, 44, 45

OPG (Ontario Power Generation company), 295–299
Opti Canada Inc., 89

Optimization program, for electricity generating systems, 281
Opti-Nexen, 110

Organic amines, as demulsifier, 23

Orphaned oil/gas wells, 49. \textit{See also}
- Abandoned wells

OSM, \textit{see} Office of Surface Mining and Reclamation Enforcement
OSOM, \textit{see} Oil sands operations modeling
Overburden (oil sands operations), 89
Oxidation, of oil spills, 188
Oxides of nitrogen emissions, from ships at birth, 164–169

Oxyfuel plants, 100, 102, 282

Ozone (O$_3$), 208

P

Packer system, 6

PAH (polyaromatic hydrocarbons), 26
Particulates, chemical absorption of, 269

PC plants, \textit{see} Pulverized coal plants
PC with carbon capture (PC+CCS), 278

Peabody Energy:
- Seneca Coal Company mine reclamation project, 132
- ultimate environmental goal of, 135

Pennsylvania:
- Luciana Bottoms West mine reclamation project, 133
- well-plugging expenditures in, 49

Permeability:
- and injection rate, 224, 225
- of sedimentary rocks, 211

Permits:
- drilling and injection, 31–32
- NPDES, 131
- for offshore platform abandonment, 37

Persian Gulf area:
- oil pollution in, 174
- oil spills in, 177–179

Petcoke, 112

Petrochemical industry:
- end products of, 25
- environmental damages from, 25–26

Petrochemical technologies, 5

Petroleum, 2–5. \textit{See also} Natural gas; Oil
- crude oil, 2, 175–177
- environmental impact of, 12–15
- forecasted increase in use of, 3
gasification of, 259, 260
as one-time crop, 61
pollutants from, 8–11
production and processing of, 6–10, 12
Petroleum engineering:
as academic discipline, 58, 61
environmentally conscious, see Environmentally conscious petroleum engineering
as formal profession, 3
and sequestration of CO₂, 61, 62
Petroleum industry, 5–11
environmental compliance in, 26–29
environmental impacts of, 61
public image of, 42
triple bottom line for, 42
Petroleum pollution, 12–15
in atmosphere, 14–15
on land and sea, 12–14
Petroleum production, 17
barriers in, 31–32
environmental damages from, 20–25
environmental impact of, 59
frac-packing operations in, 29–30
in Long Beach, California, 43–48
produced water in, 20–21
production chemicals in, 21–22
water flooding and enhanced oil recovery operations, 24–25
well stimulation by acidizing, 22–23
well stimulation by hydraulic fracturing, 23–24
Petroleum reservoirs, CO₂ storage in, 33–35
Petroleum transportation, environmental damage from, 16–17. See also Maritime oil transport
Petroleum wastes, environmental impact of, 15–16
pH buffers, in hydraulic fracturing of wells, 24
Phosphonic acids, 22
Photolysis reactions (oil spills), 188
Photooxidation (oil spills), 188
Physical absorption, for CO₂ capture, 266, 267
Physical solvents, for CO₂ capture, 266, 267
Pipelines:
block or shut-off valves in, 232
CO₂ emission from, 232
CO₂ transportation via, 219–220
detecting cracks in, 153
environmental damage from and remedies for, 58
safe setback distance from, 231–232
water content in CO₂ in, 232
Plant derating, 289, 297
Plastics, 25–26
Plugging abandoned oil/gas wells:
cement-plug deterioration, 50
cost of, 49
regulations for, 51, 80–86
Polk IGCC Plant, Florida, 134, 135, 261–262
Pollutants:
air, 17
from oil, 2
from petroleum, 8–11
Pollution. See also specific types of pollution
abatement expenditures in U.S., 61
from decommission of offshore platforms, 37
petroleum, 12–15
from petroleum extraction, 58
from plugged wells, 50
Polyaromatic hydrocarbons (PAH), 26
Polymers, in hydraulic fracturing of wells, 24
Polymer drilling muds, toxicity of, 16
Polyoxyethylated alkylphenols, as demulsifier, 23
Polyurethane plastics, 25
Porosity, injection rate and, 224, 225
Portsall, France, oil spill in, 179
Power production, for oil sands operations, 88, 100–102, 117
Prairie State Energy Campus, Illinois, 134–135
Pressure:
for CO₂ sequestration, 212–215
for CO₂ transportation via pipeline, 219, 220
monitoring, during CO₂ injection, 230
Pressure: (continued)
well-bottom, injection rate and, 223–224
Pressure ratios (gas turbines), 325–327
Pressure swing adsorption (PSA), 271, 273
Process flow diagram and assumptions, in oil sands operations modeling, 105–107
Produced water:
 microbial growth in, 22
 from oil and gas production, 20–22 reinjection of, 25
 softening of, 25
Production chemicals, from petroleum production, 21–22
PSA, see Pressure swing adsorption
Public image:
of coal industry, 137, 139, 140
of mining, 128
of petroleum industry, 42
Puertollano (ELCOGAS) plant, Spain, 256
Pulverized coal (PC) plants, 100, 101, 278
Purisol, 267

Q
Qadirpur, Pakistan, 274
Quaternary ammonium salts, 22

R
Radar image processing, oil spill detection by, 182
Rainbow trout, toxicity testing with, 15–16
Reactivation of wells, 53, 54
Rectisol®, 267, 282
Reef sites, disposal of platforms to, 38
Reference Energy/Environmental System (RES), 281
Refined oil products, 2
Refining:
 environmental damage from and remedies for, 58
technologies for, 5
Regional energy supply model, 280
Regulations. See also Environmental compliance
for casing, cementing, drilling, and completion, 71–79
for coal mining, 129–132
for drilling and injection permits, 31–32
for oil industry fluid and solids discharge, 19–20
for plugging wells, 80–86
for reserves pits, 20
Removal of offshore platforms, 36–38, 45, 46
Renewable energy, forecasted use of, 3
Reporting and response programs, for accidental oil spills, 179–182
RES (Reference Energy/Environmental System), 281
Reserves pits, for drilling solids wastes, 20
Reservoirs:
 characterization of, 233–234
 CO₂ storage in, 33–35. See also Carbon dioxide sequestration
 homogeneity of, 225–226
 modeling, 234
 monitoring pressure development in, 230
 natural occurrence of CO₂ in, 228
 oil/gas, 6
 storage capacity of, 215–219
 thickness of, 224
Resource Recovery and Conservation Act (1976), 131
Rigs-to-reef programs, 38
Risks, with CO₂ sequestration, 228
Rockefeller, John D., 3
Royal Shell Oil Company, 3, 27, 28, 43
Russia:
 coal reserves in, 127
 environmental impact of coal mining in, 128
 oil spill in, 179
Index

S
Safe Drinking Water Act Part C, 68
Safety issues:
 with CO₂ injection, 234–235
 with CO₂ sequestration, 228, 230–232
SAGD extraction, see Steam-assisted gravity drainage extraction
Said Bin Sultan Naval Base, Sultanate of Oman, 164–165. See also Oxides of nitrogen emissions, from ships at birth
Salinity, CO₂ sequestration and, 216
Salt caverns, CO₂ storage in, 210
Salts of quaternary amines, as demulsifier, 23
SAR, see Synthetic Aperture Radar
Saras Oil Refiner, Sarroch, 262
Saras Raffinerie S.P.A., 262
Sarlux IGCC power plant (Sardinia), 262–263
SCO production, see Synthetic crude oil production
Scrubbers, 25
Sea Empress oil spill, 4
Sea pollution, from petroleum, 12–14
Sedimentary basins, CO₂ storage in, 212
Sedimentary rocks, 211, 225, 226
Sedimentation:
 environment for, 225–226
 of oil spills, 188–189, 195, 197
Seismic activity:
 induced by deep-well injection, 235
 and leakage of sequestered CO₂, 231
Selexol process, 267–269
 for coal-fired power plants with CO₂ capture, 282
 in Farmland project, 272–273
Selexol solvent, 267
Self-cleaning (oil spills), 191
Separex® membrane systems, 270, 274
Sepasolv-MPE, 267
SF, see Supplementary firing
SFA Pacific, 258
Shady Point, Oklahoma, 270
Sheepshead Minnows, toxicity testing
 with, 15
Shell, see Royal Shell Oil Company
Shell Canada, 97
Shell gasification process, 250–252
Shell International Petroleum, 250
Ship accidents:
 major causes of, 152
 oil spills from, 144
Ships at berth, oxides of nitrogen emissions from, 164–169
Shut-off valves, in pipelines, 232
Signal Hill, California, 45, 46
Skimmers, for oil spills, 191–192
Slagging gasification processes, 246
Sleipner Vest gas field (North Sea), 221
Slurry fracture injection, 33
Smart ships, 153. See also Marine environment protection case study
SMCRA, see Surface Mining Control and Reclamation Act (1977)
SMR, see Steam methane reforming
SNG (substitute natural gas), 245
SO₂, see Sulfur dioxide
Sodium bisulfite, 22
Sodium chromate, 22
Sodium molybdate, 22
Sodium nitrite, 22
Sodium phosphate, 22
Sodium phosphonates, 22
Sodium sulfite, 22
Sodium sulfonates, 22
Solid discharges:
 environmental regulations on, 29
 from offshore wells, 30
Solidifiers, for oil spills, 192
Solid waste injection, in drilling, 32, 33
Solubility:
 of carbon dioxide, 212, 216–217
 of oil components, 194–195, 197
Solvent-based bitumen-extraction methods, 91
Sorbents, for oil spills, 191
South Africa, oil spill in, 179
Southern Oil Company, 53
South Korea, oil spill in, 179
Spanish Institute of Oceanography, 182
Sperm whale oil, 2
Spill berms, for oil spill containment, 191
Spreading of oil spills, 184–186, 195–196
Standard of living, compliance and, 28
Standard Oil Company of New Jersey, 3
STATOIL, 221
Steam-assisted gravity drainage (SAGD) extraction, 91–92
bitumen production from, 104
in oil sands case study, 119–120
in oil sands operations modeling, 110–111
Steam injection, in oil recovery operations, 25
Steam methane reforming (SMR), 98, 105, 116
Stratigraphic heterogeneity, 225
Structural heterogeneity, 225, 226
Subsidence monitoring instruments, 45–46
Substitute natural gas (SNG), 245
Subsurface injection:
permits for, 31–32
of solid wastes, 32, 33
Sulfur:
in coal gasification, 244
in IGCC systems, 256, 257
Sulfur dioxide (SO₂), 22
in MEA process, 273–274
removing, from combustion gases, 25
Sulfur hydrosulfitite, 22
Suncor, 95
Superstructure approach, for power plant network mitigation options, 282–287
Supplementary firing (SF), 319–320
and combined cycle unit performance, 324–325
in HRSGs, 315–317
Surface mining:
coal, 129, 130
for oil sands bitumen extraction, 89–91, 103, 107–108
Surface Mining Control and Reclamation Act (1977) (SMCRA), 129, 130
Surface Mining Control and Reclamation Act Amendments (2006), 130
Surface pipe, regulations related to, 31
Surfactants, in acidizing wells, 23
Sustainable development, 136
in coal mining, 136–137
key challenges in, 137
pillars of, 136–137
Sweep efficiency, 217–219, 234
Syncrude, 89
Syncrude Canada Ltd., 96, 97
Syngas, see Synthetic gas
Synthesis gas, 259
Synthetic Aperture Radar (SAR), 182, 183
Synthetic crude oil (SCO) production:
case study of, 117–124
energy availability for, 88
energy demands for, 120
greenhouse gas emissions from, 122
stages in, 103
by upgrading bitumen, 88. See also Bitumen upgrading
Synthetic fibers, 25–26
Synthetic gas (syngas), 98, 99, 101, 102

T
Tailings (in bitumen extraction), 91, 109–110
Tailings oil recovery (TOR) unit, 91
Tampa Electric IGCC plant, 256, 261–262
TAPS (Trans Alaskan Pipeline System), 5
Tar, 2
TDS, see Total dissolved solids
Technology, 28. See also specific technologies
Temperature:
for CO₂ sequestration, 212–215
for CO₂ transportation via pipeline, 220
Temperature swing adsorption (TSA), 271
Texaco, 252
IGCC projects of, 258–262
in THUMS Long Beach Co., 43
Texaco gasification process, 252–253, 273
Texas, abandoned wells in, 61–62
Texas Railroad Commission, 52
Theory of organic origin of oil, 61
Thermal in situ bitumen extraction, 91–92, 123
Thermal oil recovery methods, 25
Thermodynamic analysis (NGCC generation unit), 316–322
energy analysis in, 317–320
exergy analysis in, 320–322
Thermonuclear processes, for hydrogen production, 100
Thermoplastics, 25
Thermo-resistant plastics, 25
THUMS Long Beach Co., 43, 45, 47, 48
Toppling in place (offshore platforms), 38
TOR (tailings oil recovery) unit, 91
Total dissolved solids (TDS), 216, 217, 233
Total energy demands, in oil sands operations modeling, 114–115
Toxic chemical release, from petroleum refining, 11
Toxicity:
defined, 15
of oil component oxidation products, 188
of oil components, 194–195
of oil spill components, 187, 189
of petroleum wastes, 15–16
Trans Alaskan Pipeline System (TAPS), 5
Transportation, of carbon dioxide, 219–220, 232
Transportation sector, petroleum discharges in, 13–14. See also Maritime oil transport
Trinidad and Tobago, oil spill in, 179
Triple bottom line concept, 42
TSA (temperature swing adsorption), 271
Tubing string, 6
Ukraine, environmental impact of coal mining in, 128
Uncertainties analysis, for CO₂ sequestration, 236
UNCLOS (United Nations Convention the Law of the Sea), 37
Underground storage, 54–57, 221. See also Carbon dioxide sequestration
UNFCC (United Nations Framework Convention on Climate Change), 277–278
Union Oil, 43
United Nations Convention the Law of the Sea (UNCLOS), 37
United Nations Framework Convention on Climate Change (UNFCC), 277–278
United States:
abandoned wells in, 51–54
coal consumption in, 127
cal gasification in, 259
cal reserves in, 127
environmental impact of coal mining in, 128
oil spills in, 40–41, 180
pollution abatement expenditures in, 61
worst oil spill in, 178
U.S. Coast Guard Marine Safety Office, 179–180
U.S. Geological Survey, 140
Up-dip water flow, in CO₂ sequestration projects, 233–234
Upstream petroleum industry, 5, 43. See also Exploration and production industry
Urban areas, petroleum pollution from, 14
Uzbekistan, oil spill in, 179

V
Vacuum pumps, for oil spill cleanup, 193
Vacuum-topped bitumen (VTB), 111, 114
Valley Waste Disposal, Inc., 43
Vanadium, 188
Vaporization, of oil spills, 194, 201
Vapor-recovery systems, on oil tanks, 47
Virginia Division of Mines Land Reclamation, 129–130
Viscosity, injection rate and, 225
Visual pollution, Wilmington oil field and, 47
VPSA units, 271
VTB, see Vacuum-topped bitumen
Waiting-on-cement (WOC) time, 31
War, oil disasters in, 27
Wastes:
 from drilling oil and gas wells, 17
 petroleum, 15–16
 produced water from petroleum production, 20–21
 production chemicals from petroleum production, 21–22
 solid, from drilling, 20
 subsurface injection of, 32, 33
 from water and chemical flooding of wells, 24–25
Wastewater disposal, environmental impact of, 59
Water, hydrostatic pressure gradient for, 215. See also Freshwater; Groundwater
Water-based muds (WBMs), 16, 29, 30
Water electrolysis, for hydrogen production, 100
Water flooding:
 for land subsidence control, 46
 in petroleum production, 24–25
Water pollution:
 from oil spills, 152–153, 174. See also Oil spills
 from petroleum, 12–14
 from plugged wells, 50
 and Wilmington oil field, 44, 45, 47
Water vapor, 208
 in CO₂ pipelines, 232
 in cryogenic CO₂ capture systems, 271
WBMs, see Water-based muds
Wells. See also Abandoned wells
 annular seals of, 31
 unplugged, 51–52
 waste from, 17
Well abandonment (offshore), 37
Well blowouts, 17, 19, 31
 damage from and remedies for, 58
 environmental impact of, 59
 preventing, 31
Wellbores, 6
Well-bottom pressure, injection rate and, 223–224
Well-plugging funds, 49
Well stimulation, 22
 by acidizing, 22–23
 by hydraulic fracturing of wells, 23–24
Well testing, environmental impact of, 59
Western Europe, coal gasification in, 258
Weyburn oil pool (Saskatchewan, Canada), 221
Wildlife rescue operations, 181–182
Wilmington oil field (California), 43
Windrows (oil spills), 174
WOC (waiting-on-cement) time, 31
X
Xanthan gum, as gelling agent, 23
Y
Young, James, 2
Z
Zero-emission coal technologies, 244
Zinc carbonate, 22
Zinc salts, for corrosion control, 22