Index

α-agents, 29
α-lattices, 27, 32
β-agents, 29
γ-agents, 29

Adversarial environment, 265
Agreement algorithm, 104
Algebraic connectivity, 23, 101
Alignment, 24, 26
Assignment problem, 111
Auction algorithm, 113, 119
Autonomy, 429
Average-consensus, 23, 36

Battlespace, 409
management, 410
Bellman equation, 218, 226
Binary search, 313
Bounds on subsystem interconnections, 90

Calibrated forecasts, 13
Centralized optimization, 218
Centroidal Voronoi tessellations, 160, 161
Cohesion, 26
Collective
behavior, 26
potential function, 27
Collision avoidance, 26, 81
Communication graph, 45
connectivity, 47
hierarchical product graph, 48
Laplacian matrix, 47
neighbor dependent, 59
rooted directed spanning tree, 48

sum graph, 49
Complex
networks, 21
systems, 410
Complexity, 3, 394
management, 15, 410
reduction, 80, 90, 91, 106
Complementary slackness, 112
Computer science, 405
Consensus, 53
filter, 35
problems, 21
theory, 24
Cooperation, 104
Cooperative
control, 3, 63
data fusion, 32
Coordinating function, 106
Coordination
function, 261
variables, 261
Coupling constraint, 82, 102

Decentralized
control, 79
optimization, 219
Decoder, 306
Decomposition, 214
Disagreement function, 23
Distortion, 312
Distributed
algorithms, 29, 140, 143, 145, 147, 149, 174
control design, 93
decision architecture, 3
Distributed (Continued)
   Kalman filter, 36, 38, 39
   linear quadratic regulator, 98
   receding horizon control, 64, 71
   suboptimal control, 99
Divergence, 313
Duality, 111
Dubins car, 117
Dynamic
   graphs, 23
   programming, 262, 314
   task assignment, 8
   vehicle routing, 140

Edge connectivity, 94, 101
Egocentric modeling, 213
Emergency controller, 105
Encoder, 306
Enemy modeling, 266
Entropy rate, 306
Equilibrium strategies, 285
Escape panic phenomenon, 32
ETSP, 146
Evader, 282
Evolution of languages, 15
Evolutionary cooperation, 220

Fairness and efficiency, 157
Feasibility, 64
Feasible set projection, 105
Feasible trajectories, 115
Fermat-Torricelli points, 152, 153, 156, 161
Filter
   LEG game, 286
   LQG Game, 282
Finite time optimal control problem, 83
Flocking, 25
   algorithms, 29
Formation, 44
   flocking, 43
   hierarchical, 50
   stability, hierarchical, 51
   stability, switched, 54
Formation flight, 81
Formations, 6
Fragmentation phenomenon, 32, 35

Game theory, 17
Graph
   adjacency matrix, 94
   Laplacian, 23, 94
Heterogeneous subsystems, 91
Hierarchical control, 414
Hierarchical interconnection graph, 105
Hybrid control design, 106
Hybrid systems, 307, 379

Identical subsystems, 93
Information
   exchange, 80, 90
   patterns, 14
   processing, swarms, 39
   set, 283
   superiority, 430
Interaction graph, 80
Interagent communication, 140, 142–145, 147–149, 159, 168, 174

JSTARS, 410
Kalman filtering, 32
Kill chain, 429

Language
   benefit, 359
   evolutionary dynamics, 361
   fitness, 361
   grammar network, 365
   learning model, 361
   NKN model, 360
   similarity, 363
   structured, 363
   technical applications, 373
Language convergence
   equilibrium states, 366
   network density, 368
   rate, 370
Laplacian matrix, 23
Learning in games, 9, 11, 213
Linear programming, 263
Linear-Exponential-Gaussian, 281
Linear-Quadratic-Gaussian, 281
   discrete-time game problem, 282
Linear-Quadratic-Regulator, 95
Local-global feasibility and stability, 85
Local stability test, 90
Logic rules for cooperation, 105
LP-based path planning, 269
Lyapunov function, 86

MacQueen’s algorithm, 160
Markov model, 215
<table>
<thead>
<tr>
<th>Term</th>
<th>Page(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maximum vertex degree</td>
<td>100</td>
</tr>
<tr>
<td>Median Voronoi tessellation</td>
<td>151, 158, 161</td>
</tr>
<tr>
<td>Mental models</td>
<td>419</td>
</tr>
<tr>
<td>Microfilter networks</td>
<td>32</td>
</tr>
<tr>
<td>Micro-Kalman filter</td>
<td>36</td>
</tr>
<tr>
<td>Mixed integer linear programming</td>
<td>11, 262</td>
</tr>
<tr>
<td>Mode alphabet</td>
<td>308</td>
</tr>
<tr>
<td>Mode estimation</td>
<td>14, 305</td>
</tr>
<tr>
<td>Model predictive control</td>
<td>6, 63, 262</td>
</tr>
<tr>
<td>Motion coordination strategies</td>
<td>143</td>
</tr>
<tr>
<td>Multivehicle</td>
<td></td>
</tr>
<tr>
<td>motion planning</td>
<td>5</td>
</tr>
<tr>
<td>tiling policies</td>
<td>148, 167</td>
</tr>
<tr>
<td>Neighboring uncertainty model</td>
<td>104</td>
</tr>
<tr>
<td>Network-centric warfare</td>
<td>430</td>
</tr>
<tr>
<td>No-communication policies</td>
<td>143, 144</td>
</tr>
<tr>
<td>Observability</td>
<td>386</td>
</tr>
<tr>
<td>Obstacle avoidance</td>
<td>26, 268</td>
</tr>
<tr>
<td>Ontology</td>
<td>410</td>
</tr>
<tr>
<td>Optimal trajectories</td>
<td>115</td>
</tr>
<tr>
<td>Paper machine control</td>
<td>106</td>
</tr>
<tr>
<td>Partial order</td>
<td>384</td>
</tr>
<tr>
<td>Performance analysis in light load</td>
<td>150</td>
</tr>
<tr>
<td>Perron matrix</td>
<td>24</td>
</tr>
<tr>
<td>Prediction mismatch</td>
<td>80, 89, 91</td>
</tr>
<tr>
<td>Probing signal</td>
<td>305</td>
</tr>
<tr>
<td>Proximity radius</td>
<td>58</td>
</tr>
<tr>
<td>Pursuer</td>
<td>282</td>
</tr>
<tr>
<td>Ramanujan graphs</td>
<td>24</td>
</tr>
<tr>
<td>Randomly generated codes</td>
<td>306</td>
</tr>
<tr>
<td>Receding horizon</td>
<td></td>
</tr>
<tr>
<td>control</td>
<td>6, 63</td>
</tr>
<tr>
<td>implementation</td>
<td>263, 270</td>
</tr>
<tr>
<td>Region connection calculus (RCC)</td>
<td>420</td>
</tr>
<tr>
<td>Reynolds flocking rules</td>
<td>26</td>
</tr>
<tr>
<td>RoboFlag</td>
<td>391</td>
</tr>
<tr>
<td>competition</td>
<td>262, 271</td>
</tr>
<tr>
<td>drill</td>
<td>12, 215, 263, 271</td>
</tr>
<tr>
<td>Robotic game</td>
<td>381</td>
</tr>
<tr>
<td>Robust constraint fulfillment</td>
<td>102</td>
</tr>
<tr>
<td>Saddle interval</td>
<td>300</td>
</tr>
<tr>
<td>Self-organization</td>
<td>26</td>
</tr>
<tr>
<td>Sensor-based policies</td>
<td>143, 145, 148</td>
</tr>
<tr>
<td>Sensor networks</td>
<td>32</td>
</tr>
<tr>
<td>Service requests</td>
<td>142</td>
</tr>
<tr>
<td>Shannon entropy</td>
<td>426</td>
</tr>
<tr>
<td>Simulations</td>
<td>169</td>
</tr>
<tr>
<td>Single-vehicle tiling policy</td>
<td>147, 161, 171</td>
</tr>
<tr>
<td>Situation awareness</td>
<td>409</td>
</tr>
<tr>
<td>Small-world networks</td>
<td>24</td>
</tr>
<tr>
<td>Smoothed optimal policy</td>
<td>222</td>
</tr>
<tr>
<td>Softmax</td>
<td>223</td>
</tr>
<tr>
<td>Sparsity pattern</td>
<td>93, 99, 106</td>
</tr>
<tr>
<td>Spatio-temporal Poisson process</td>
<td>141</td>
</tr>
<tr>
<td>Split/rejoin maneuver</td>
<td>33</td>
</tr>
<tr>
<td>Squeezing maneuver</td>
<td>34</td>
</tr>
<tr>
<td>Stability of flocks</td>
<td>30</td>
</tr>
<tr>
<td>Stabilizing feedback</td>
<td>45</td>
</tr>
<tr>
<td>time-variant communication</td>
<td>57</td>
</tr>
<tr>
<td>State estimator</td>
<td>387</td>
</tr>
<tr>
<td>Stationary policy</td>
<td>218</td>
</tr>
<tr>
<td>probability distribution</td>
<td>223</td>
</tr>
<tr>
<td>Stochastic approximation</td>
<td>225</td>
</tr>
<tr>
<td>Stress</td>
<td></td>
</tr>
<tr>
<td>future</td>
<td>286</td>
</tr>
<tr>
<td>past</td>
<td>286</td>
</tr>
<tr>
<td>Subformation</td>
<td>50</td>
</tr>
<tr>
<td>leader</td>
<td>50</td>
</tr>
<tr>
<td>Swarms</td>
<td>5, 21</td>
</tr>
<tr>
<td>Switching networks</td>
<td>23</td>
</tr>
<tr>
<td>System time</td>
<td>143, 151, 164, 167, 169, 170</td>
</tr>
<tr>
<td>Task assignment</td>
<td>139, 141–143, 145, 147, 159</td>
</tr>
<tr>
<td>Temporal interval calculus</td>
<td>420</td>
</tr>
<tr>
<td>Time-varying system</td>
<td>310</td>
</tr>
<tr>
<td>Topology</td>
<td></td>
</tr>
<tr>
<td>grammar network</td>
<td>365</td>
</tr>
<tr>
<td>language population</td>
<td>361</td>
</tr>
<tr>
<td>Transition systems</td>
<td>386</td>
</tr>
<tr>
<td>Typical set</td>
<td>311</td>
</tr>
<tr>
<td>Uncertainty</td>
<td>310</td>
</tr>
<tr>
<td>Undirected graph</td>
<td>94</td>
</tr>
<tr>
<td>Utility</td>
<td></td>
</tr>
<tr>
<td>marginal contribution</td>
<td>9</td>
</tr>
<tr>
<td>wonderful life</td>
<td>9</td>
</tr>
<tr>
<td>Vehicle-target assignment</td>
<td>4</td>
</tr>
<tr>
<td>Vicsek’s model</td>
<td>24</td>
</tr>
<tr>
<td>Voronoi regions</td>
<td>147–149, 151, 153, 156–158, 168, 171</td>
</tr>
<tr>
<td>Voronoi-based polygonal paths</td>
<td>262</td>
</tr>
</tbody>
</table>