Index

A, B, C
- arithmetic logic units, 2
- arithmetic operation
 - exponent, 2
 - mantissa, 2
- Arnoldi
 - basis, 164
- bandwidth, 6
- basis
 - Arnoldi, 164
 - change, 83
 - change example, 283
- Lanczos, 167
- BiCG, 207, 210
- BiCGSTAB, 217, 221, 222
- cache
 - lines, 8
 - memory, 8
- communicator, 44
- computers
 - scientific, 1
 - vector, 38
- concurrency, 3
- conditioning
 - definition, 85
 - example, 284
 - Poisson’s equation, 285
- Conjugate Gradient
 - algorithm, 173, 176, 250
 - pipelined, 48
- preconditioning, 183
- singular system, 296
- Crout
 - block factorization, 286
 - factorization of a dense matrix, 286
 - factorization of a skyline matrix, 289
 - orthogonalization, 295
- cyclic reduction, 39

D, E, F
- data
 - locality, 58
 - spatial locality, 10, 31
 - temporal locality, 10, 31
- distributed memory, 18
- eigenvalue
 - definition, 79
 - example, 284
 - Poisson’s equation, 285
- eigenvector
 - definition, 79
 - example, 284
 - Poisson’s equation, 285
- elimination tree, 147, 150
- factorization
 - backward substitution, 110
 - block, 125
 - Cholesky, 121, 313
 - Crout, 121, 286, 289
 - forward substitution, 109
Gauss, 113
Gauss-Jordan, 115, 117
LU, 109
MPI implementation, 130
Partial LU factorization, 111
pivoting, 118
Symmetric matrix, 121
finite difference
 matrix assembly, 102
 matrix-vector product, 236
finite element
 matrix assembly, 102
 matrix-vector product, 236
finite volume
 matrix assembly, 102
 matrix-vector product, 236
floating point, 2
floating point number, 1
flops
 definition, 2
 Gflops, 2
 Mflops, 2
 Pflops, 2
 Tflops, 2

G, I, K, L
GMRES, 185, 188, 191, 194, 197–199, 213, 218, 334
GMRES(m), 185, 193
GPU, 14
graph
 of a matrix, 94
instruction overlap, 3
Krylov subspace, 161
Lanczos
 algorithm, 167–169, 172, 223
 basis, 167, 173, 194, 201, 203, 204,
 206, 212, 215, 216
 method, 201, 206, 207, 209, 211, 214
 vectors, 175
linear application, 74
linear systems, 17
load balancing, 21
loop
 data dependency, 26
 dependency example, 27
distance of dependence, 39
nested loops, 31, 34
output dependency, 27
parallelization, 25
parallelization, 25
pipeline operations, 41
reduction operation, 30
vectorization, 39

M
matrix
 adjoint, 77
 assembly by finite difference, 102
 assembly by finite element, 102
 assembly by finite volume, 102
 basis change, 83
 block product, 60
 conditioning, 85, 86
 definition, 76
 eigenvalue, 79
 eigenvector, 79
 graph, 94
 Hessenberg form, 166
 image, 80, 288
 invertible, 78
 kernel, 80, 288
 multiplication, 78
 norm, 80
 parallel assembly, 98, 99
 parallel matrix-vector product, 225,
 227, 229, 283
 parallel product, 58, 64
 preconditioning, 180, 198
 properties, 79
 sparse matrix-vector product, 96
 spectral radius, 79
 square, 78
 storage COO, 97
 storage CSR, 96
 transposed, 77
matrix-vector product
 asynchronous, 236
 non-blocking
 communication, 236
 parallelization, 225, 227, 236, 283
 sparse, 96
memory
 cache, 8
 distributed, 13
 hierarchy, 8
 hybrid, 14
 multi-bank, 7
 registers, 37
 shared, 17
 vector registers, 37, 41
microprocessors
 frequency, 2
 Moore’s law, 2
MIMD, 15
MINRES, 193
MPI
 bibliography, 325
 collective communications, 46
 optimization of exchanges, 46, 47
 paradigm, 18, 43
 point-to-point communications, 45

O, P
OpenMP
 bibliography, 324
 critical section, 36
 paradigm, 34, 43
 private, 35
 shared, 35
ORTHODIR, 196, 197, 199, 218, 250
parallel computer, 3
parallelism
 spatial, 4
 temporal, 4
parallelization
 loop example, 281, 282
performance
 analysis, 49
 degree of parallelism, 19
 efficiency, 20
 granularity, 21
 load balancing, 21
 scalability, 22
 speedup, 20
 strong scalability, 23
 strong scalability efficiency, 23
 weak scalability, 23
 weak scalability efficiency, 24
pipeline
 architecture, 6
 process, 4
pivoting
 definition, 118, 120
 numerical, 120
preconditioner
 additive Schwarz, 263, 265, 267
 algebraic multigrid, 257
 definition, 108
 diagonal, 243
 Gauss-Seidel, 275
 incomplete factorization, 245
 linelet, 276
 locally optimal, 250
 multiplicative Schwarz, 265
 restricted additive Schwarz (RAS), 269
 symmetric successive over relaxation (SSOR), 275
preconditioning
 Conjugate Gradient, 183
 nonsymmetric matrix, 198
 symmetric matrix, 180
programming
 data exchanges, 18
 message-passing, 37
 MIMD, 18
 SPMD, 18
projection
 affine space, 186
 orthogonal, 73
Q, R, S
QMR, 211, 214, 216, 217
reduction
 cost, 55
 cyclic, 57
 principles, 54
 stability, 55
Richardson method, 107, 271
scalability
 efficiency, 23, 24
 strong, 23
 weak, 23
scalar product
parallelization, 238
scalar product definition, 72
Schur
 complement, 112, 128, 134, 139–143, 149–151, 153–155, 157, 158, 248, 251, 256, 257
 complement method, 250, 251, 254, 263
dual method, 298, 299
dual method with regularization, 300
 primal method, 337
Schwarz
 additive preconditioner, 263
 method, 264
 restricted additive Schwarz preconditioner, 269
scientific libraries
 Alinea, 333
 BLAS, 69
 JOSTLE, 334
 LaPack, 69
 METIS, 334
 MKL, 159
 MUMPS, 159
 Paraver, 328
 Pardiso, 159
 PETSc, 332
 ScaLaPack, 69, 135
 Scalasca, 328
 SCOTCH, 335
SIMD, 14
SMP architecture, 12
 space
 affine, 73
 complement, 72
 orthogonal complement, 72
T, V
tasks
 dynamic mode, 21
 mutual exclusion, 36
 static mode, 21
truncation, 5
vector
 definition, 71
 parallel scalar product, 238
 instructions
 definition, 37
 registers, 8
 scalar product, 72
vectorization
 loop example, 281, 282
vectors
 Lanczos, 175