CONTENTS

PREFACE ix

1 INTRODUCTION 1
1.1 Matrices 2
1.2 Vectors 6
1.3 Summation Convention 11
1.4 Cartesian Tensors 12
1.5 Polar Decomposition Theorem 21
1.6 D’Alembert’s Principle 23
1.7 Virtual Work Principle 29
1.8 Approximation Methods 32
1.9 Discrete Equations 34
1.10 Momentum, Work, and Energy 37
1.11 Parameter Change and Coordinate Transformation 39

Problems 44

2 KINEMATICS 47
2.1 Motion Description 48
2.2 Strain Components 55
2.3 Other Deformation Measures 60
2.4 Decomposition of Displacement / 62
2.5 Velocity and Acceleration / 64
2.6 Coordinate Transformation / 68
2.7 Objectivity / 74
2.8 Change of Volume and Area / 77
2.9 Continuity Equation / 81
2.10 Reynolds’ Transport Theorem / 82
2.11 Examples of Deformation / 84
2.12 Geometry Concepts / 92
Problems / 94

3 FORCES AND STRESSES

3.1 Equilibrium of Forces / 97
3.2 Transformation of Stresses / 100
3.3 Equations of Equilibrium / 100
3.4 Symmetry of the Cauchy Stress Tensor / 102
3.5 Virtual Work of the Forces / 103
3.6 Deviatoric Stresses / 113
3.7 Stress Objectivity / 115
3.8 Energy Balance / 119
Problems / 120

4 CONSTITUTIVE EQUATIONS

4.1 Generalized Hooke’s Law / 124
4.2 Anisotropic Linearly Elastic Materials / 126
4.3 Material Symmetry / 127
4.4 Homogeneous Isotropic Material / 129
4.5 Principal Strain Invariants / 136
4.6 Special Material Models for Large Deformations / 137
4.7 Linear Viscoelasticity / 141
4.8 Nonlinear Viscoelasticity / 155
4.9 A Simple Viscoelastic Model for Isotropic Materials / 161
4.10 Fluid Constitutive Equations / 162
4.11 Navier–Stokes Equations / 164
Problems / 164

5 FINITE ELEMENT FORMULATION: LARGE-DEFORMATION, LARGE-ROTATION PROBLEM

5.1 Displacement Field / 169
CONTENTS

5.2 Element Connectivity / 176
5.3 Inertia and Elastic Forces / 178
5.4 Equations of Motion / 180
5.5 Numerical Evaluation of The Elastic Forces / 188
5.6 Finite Elements and Geometry / 193
5.7 Two-Dimensional Euler–Bernoulli Beam Element / 199
5.8 Two-Dimensional Shear Deformable Beam Element / 203
5.9 Three-Dimensional Cable Element / 205
5.10 Three-Dimensional Beam Element / 206
5.11 Thin-Plate Element / 208
5.12 Higher-Order Plate Element / 210
5.13 Brick Element / 211
5.14 Element Performance / 212
5.15 Other Finite Element Formulations / 216
5.16 Updated Lagrangian and Eulerian Formulations / 218
5.17 Concluding Remarks / 221
Problems / 223

6 FINITE ELEMENT FORMULATION: SMALL-DEFORMATION, LARGE-ROTATION PROBLEM

6.1 Background / 226
6.2 Rotation and Angular Velocity / 229
6.3 Floating Frame of Reference (FFR) / 234
6.4 Intermediate Element Coordinate System / 236
6.5 Connectivity and Reference Conditions / 238
6.6 Kinematic Equations / 243
6.7 Formulation of The Inertia Forces / 245
6.8 Elastic Forces / 248
6.9 Equations of Motion / 250
6.10 Coordinate Reduction / 251
6.11 Integration of Finite Element and Multibody System Algorithms / 253
Problems / 258

7 COMPUTATIONAL GEOMETRY AND FINITE ELEMENT ANALYSIS

7.1 Geometry and Finite Element Method / 262
7.2 ANCF Geometry / 264
7.3 Bezier Geometry / 266
7.4 B-Spline Curve Representation / 267
7.5 Conversion of B-Spline Geometry to ANCF Geometry / 271
CONTENTS

7.6 ANCF and B-Spline Surfaces / 273
7.7 Structural and Nonstructural Discontinuities / 275
 Problems / 277

8 PLASTICITY FORMULATIONS / 279

8.1 One-Dimensional Problem / 281
8.2 Loading and Unloading Conditions / 282
8.3 Solution of the Plasticity Equations / 283
8.4 Generalization of The Plasticity Theory: Small Strains / 291
8.5 J_2 Flow Theory with Isotropic/Kinematic Hardening / 298
8.6 Nonlinear Formulation for Hyperelastic–Plastic Materials / 312
8.7 Hyperelastic–Plastic J_2 Flow Theory / 322
 Problems / 326

REFERENCES / 329

INDEX / 339