CONTENTS

How to Use This Book xiii

1 What are Wireless Sensor Networks? 1
 1.1 Wireless Sensor Networks, 1
 1.2 Sample Applications Around the World, 3
 1.3 Types of Wireless Sensor Networks, 7
 Summary, 10
 Further Reading, 10

2 Anatomy of a Sensor Node 11
 2.1 Hardware Components, 11
 2.2 Power Consumption, 13
 2.3 Operating Systems and Concepts, 15
 2.3.1 Memory Management, 17
 2.3.2 Interrupts, 23
 2.3.3 Tasks, Threads, and Events, 24
 2.4 Simulators, 26
 2.5 Communication Stack, 28
 2.5.1 Sensor Network Communication Stack, 28
 2.5.2 Protocols and Algorithms, 30
 Anatomy of a Sensor Node: Summary, 30
 Further Reading, 30
CONTENTS

3 Radio Communications 33
 3.1 Radio Waves and Modulation/Demodulation, 33
 3.2 Properties of Wireless Communications, 36
 3.2.1 Interference and Noise, 37
 3.2.2 Hidden Terminal Problem, 38
 3.2.3 Exposed Terminal Problem, 39
 3.3 Medium Access Protocols, 39
 3.3.1 Design Criteria for Medium Access Protocols, 41
 3.3.2 Time Division Multiple Access, 42
 3.3.3 Carrier Sense Multiple Access, 45
 3.3.4 Sensor MAC, 48
 3.3.5 Berkeley MAC, 50
 3.3.6 Optimizations of B-MAC, 51
 3.3.7 Other Protocols and Trends, 51
Radio Communications: Summary, 53
Questions and Exercises, 53
Further Reading, 54

4 Link Management 57
 4.1 Wireless Links Introduction, 57
 4.2 Properties of Wireless Links, 59
 4.2.1 Links and Geographic Distance, 59
 4.2.2 Asymmetric Links, 60
 4.2.3 Link Stability and Burstiness, 61
 4.3 Error Control, 62
 4.3.1 Backward Error Control, 62
 4.3.2 Forward Error Control, 63
 4.4 Naming and Addressing, 64
 4.4.1 Naming, 64
 4.4.2 Addressing, 65
 4.4.3 Assignment of Addresses and Names, 65
 4.4.4 Using Names and Addresses, 66
 4.5 Link Estimation Protocols, 66
 4.5.1 Design Criteria, 66
 4.5.2 Link Quality Based, 67
 4.5.3 Delivery Rate Based, 68
 4.5.4 Passive and Active Estimators, 69
 4.5.5 Collection Tree Protocol, 69
 4.6 Topology Control, 71
 4.6.1 Centralized Topology Control, 71
 4.6.2 Distributed Topology Control, 72
Link Management: Summary, 73
Questions and Exercises, 73
Further Reading, 74
5 Multi-Hop Communications

5.1 Routing Basics, 77
5.2 Routing Metrics, 80
 5.2.1 Location and Geographic Vicinity, 80
 5.2.2 Hops, 81
 5.2.3 Number of Retransmissions, 82
 5.2.4 Delivery Delay, 83
5.3 Routing Protocols, 84
 5.3.1 Full-Network Broadcast, 85
 5.3.2 Location-Based Routing, 87
 5.3.3 Directed Diffusion, 90
 5.3.4 Collection Tree Protocol, 92
 5.3.5 Zigbee, 94
Multi-Hop Communications: Summary, 95
Questions and Exercises, 96
Further Reading, 96

6 Data Aggregation and Clustering

6.1 Clustering Techniques, 99
 6.1.1 Random Clustering, 101
 6.1.2 Nearest Sink, 102
 6.1.3 Geographic Clustering, 103
 6.1.4 Clustering Summary, 104
6.2 In-Network Processing and Data Aggregation, 104
 6.2.1 Compression, 104
 6.2.2 Statistical Techniques, 107
6.3 Compressive Sampling, 109
Data Aggregation and Clustering: Summary, 110
Questions and Exercises, 111
Further Reading, 111

7 Time Synchronization

7.1 Clocks and Delay Sources, 113
7.2 Requirements and Challenges, 114
7.3 Time Synchronization Protocols, 117
 7.3.1 Lightweight Tree Synchronization, 117
 7.3.2 Reference Broadcast Synchronization, 118
 7.3.3 NoTime Protocol, 118
Time Synchronization: Summary, 120
Questions and Exercises, 121
Further Reading, 121
CONTENTS

8 Localization Techniques 123
 8.1 Localization Challenges and Properties, 123
 8.1.1 Types of Location Information, 124
 8.1.2 Precision Against Accuracy, 125
 8.1.3 Costs, 125
 8.2 Pre-Deployment Schemes, 126
 8.3 Proximity Schemes, 126
 8.4 Ranging Schemes, 128
 8.4.1 Triangulation, 129
 8.4.2 Trilateration, 129
 8.5 Range-Based Localization, 129
 8.6 Range-Free Localization, 130
 8.6.1 Hop-Based Localization, 130
 8.6.2 Point in Triangle (PIT), 131
 Localization: Summary, 132
 Questions and Exercises, 133
 Further Reading, 133

9 Sensing Techniques 135
 9.1 Types of Sensors, 135
 9.2 Sensing Coverage, 136
 9.3 High-Level Sensors, 137
 9.4 Special Case: The Human As a Sensor, 138
 9.5 Actuators, 138
 9.6 Sensor Calibration, 139
 9.7 Detecting Errors, 140
 Sensing Techniques: Summary, 141
 Questions and Exercises, 141

10 Designing and Deploying WSN Applications 143
 10.1 Early WSN Deployments, 143
 10.1.1 Murphy Loves Potatoes, 144
 10.1.2 Great Duck Island, 144
 10.2 General Problems, 145
 10.2.1 Node Problems, 146
 10.2.2 Link/Path Problems, 147
 10.2.3 Global Problems, 148
 10.3 General Testing and Validation, 149
 10.4 Requirements Analysis, 151
 10.4.1 Analyzing the Environment, 151
 10.4.2 Analyzing Lifetime and Energy Requirements, 153
 10.4.3 Analyzing Required Data, 153
 10.4.4 Analyzing User Expectations, 154