Contents

About the Author xiii
Preface xv
Acknowledgments xvii
Glossary xix
Notation xxi
Introduction xxv

Part I
PART SURFACES

1
Geometry of a Part Surface
1.1 On the Analytical Description of Ideal Surfaces
1.2 On the Difference between *Classical Differential Geometry and Engineering Geometry of Surfaces*
1.3 On the Analytical Description of Part Surfaces
1.4 Boundary Surfaces for an Actual Part Surface
1.5 Natural Representation of a Desired Part Surface
 1.5.1 First fundamental form of a desired part surface
 1.5.2 Second fundamental form of a desired part surface
 1.5.3 Illustrative example
1.6 Elements of Local Geometry of a Desired Part Surface
 1.6.1 Unit tangent vectors
 1.6.2 Tangent plane
 1.6.3 Unit normal vector
 1.6.4 Unit vectors of principal directions on a part surface
 1.6.5 Principal curvatures of a part surface
 1.6.6 Other parameters of curvature of a part surface

2
On the Possibility of Classification of Part Surfaces
2.1 Sculptured Part Surfaces
 2.1.1 Local patches of ideal part surfaces
 2.1.2 Local patches of real part surfaces

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>Planar Characteristic Images</td>
<td>33</td>
</tr>
<tr>
<td>2.2.1</td>
<td>Dupin indicatrix</td>
<td>33</td>
</tr>
<tr>
<td>2.2.2</td>
<td>Curvature indicatrix</td>
<td>38</td>
</tr>
<tr>
<td>2.2.3</td>
<td>Circular chart for local patches of smooth regular part surfaces based on curvature indicatrix</td>
<td>41</td>
</tr>
<tr>
<td>2.3</td>
<td>Circular Diagrams at a Surface Point</td>
<td>42</td>
</tr>
<tr>
<td>2.3.1</td>
<td>Circular diagrams</td>
<td>42</td>
</tr>
<tr>
<td>2.3.2</td>
<td>Circular chart for local patches of smooth regular part surfaces based on circular diagrams</td>
<td>52</td>
</tr>
<tr>
<td>2.4</td>
<td>One More Useful Characteristic Curve</td>
<td>53</td>
</tr>
</tbody>
</table>

Part II GEOMETRY OF CONTACT OF PART SURFACES | 55 |

3 Early Works in the Field of Contact Geometry | 57 |
3.1	Order of Contact	57
3.2	Contact Geometry of Part Surfaces	59
3.3	Local Relative Orientation of the Contacting Part Surfaces	59
3.4	First-Order Analysis: Common Tangent Plane	64
3.5	Second-Order Analysis	65
3.5.1	Comments on analytical description of the local geometry of contacting surfaces loaded by a normal force: Hertz proportional assumption	65
3.5.2	Surface of normal relative curvature	68
3.5.3	Dupin indicatrix of the surface of relative normal curvature	71
3.5.4	Matrix representation of equation of the Dupin indicatrix of the surface of relative normal curvature	72
3.5.5	Surface of relative normal radii of curvature	73
3.5.6	Normalized relative normal curvature	73
3.5.7	Curvature indicatrix of the surface of relative normal curvature	74
3.6	A Characteristic Curve $\mathcal{N}_k(\mathcal{R})$ of Novel Kind	75

4 An Analytical Method Based on Second Fundamental Forms of the Contacting Part Surfaces | 79 |

5 Indicatrix of Conformity of Two Smooth Regular Surfaces in the First Order of Tangency | 83 |
5.1	Preliminary Remarks	83
5.2	Indicatrix of Conformity for Two Smooth Regular Part Surfaces in the First Order of Tangency	87
5.3	Directions of Extremum Degree of Conformity of Two Part Surfaces in Contact	94
5.4	Asymptotes of the Indicatrix of Conformity $Cnf_R(P_1/P_2)$	97
Contents

5.5 Comparison of Capabilities of Indicatrix of Conformity $Cnf_R(P_1/P_2)$ and of Dupin Indicatrix of the Surface of Relative Curvature $Dup(L)$ 98

5.6 Important Properties of Indicatrix of Conformity $Cnf_R(P/T)$ of Two Smooth Regular Part Surfaces 99

5.7 The Converse Indicatrix of Conformity of Two Regular Part Surfaces in the First Order of Tangency 99

6 Plücker Conoid: More Characteristic Curves 101

6.1 Plücker Conoid 101
 6.1.1 Basics 101
 6.1.2 Analytical representation 102
 6.1.3 Local properties 103
 6.1.4 Auxiliary formulae 104

6.2 On Analytical Description of Local Geometry of a Smooth Regular Part Surface 105
 6.2.1 Preliminary remarks 105
 6.2.2 The Plücker conoid 106
 6.2.3 Plücker curvature indicatrix 108
 6.2.4 $\%R(P_1)$-indicatrix of a part surface 109

6.3 Relative Characteristic Curve 112
 6.3.1 On a possibility of implementation of two Plücker conoids 112
 6.3.2 $\%R(P_1/P_2)$-relative indicatrix of two contacting part surfaces P_1 and P_2 113

7 Feasible Kinds of Contact of Two Smooth Regular Part Surfaces in the First Order of Tangency 117

7.1 On the Possibility of Implementation of the Indicatrix of Conformity for the Purposes of Identification of the Actual Kind of Contact of Two Smooth Regular Part Surfaces 117

7.2 Impact of Accuracy of the Computation on the Parameters of the Indicatrices of Conformity $Cnf_R(P_1/P_2)$ 121

7.3 Classification of Possible Kinds of Contact of Two Smooth Regular Part Surfaces 122

Part III MAPPING OF THE CONTACTING PART SURFACES 131

8 \mathbb{R}-Mapping of the Interacting Part Surfaces 133

8.1 Preliminary Remarks 133

8.2 On the Concept of \mathbb{R}-Mapping of the Interacting Part Surfaces 134

8.3 \mathbb{R}-mapping of a Part Surface P_1 onto Another Part Surface P_2 136

8.4 Reconstruction of the Mapped Part Surface 140

8.5 Illustrative Examples of the Calculation of the Design Parameters of the Mapped Part Surface 141
Contents

9 Generation of Enveloping Surfaces: General Consideration 145
 9.1 Envelope for Successive Positions of a Moving Planar Curve 145
 9.2 Envelope for Successive Positions of a Moving Surface 149
 9.2.1 Envelope for a one-parametric family of surfaces 149
 9.2.2 Envelope for a two-parametric family of surfaces 152
 9.3 Kinematic Method for Determining Enveloping Surfaces 154
 9.4 Peculiarities of Implementation of the Kinematic Method in Cases of Multi-parametric Relative Motion of the Surfaces 164

10 Generation of Enveloping Surfaces: Special Cases 167
 10.1 Part Surfaces that Allow for Sliding Over Themselves 167
 10.2 Reversibly Enveloping Surfaces: Introductory Remarks 169
 10.3 Generation of Reversibly Enveloping Surfaces 180
 10.3.1 Kinematics of crossed-axis gearing 180
 10.3.2 Base cones in crossed-axis gear pairs 182
 10.3.3 Tooth flanks of geometrically accurate (ideal) crossed-axis gear pairs 186
 10.3.4 Tooth flank of a crossed-axis gear 192
 10.4 On the Looseness of Two Olivier Principles 197
 10.4.1 An example of implementation of the first Olivier principle for generation of enveloping surfaces in a degenerate case 198
 10.4.2 An example of implementation of the second Olivier principle for generation of enveloping surfaces in a degenerate case 199
 10.4.3 Concluding remarks 200

Conclusion 203

APPENDICES 205

Appendix A: Elements of Vector Calculus 207
 A.1 Fundamental Properties of Vectors 207
 A.2 Mathematical Operations over Vectors 207

Appendix B: Elements of Coordinate System Transformations 211
 B.1 Coordinate System Transformation 211
 B.1.1 Introduction 211
 B.1.2 Translations 213
 B.1.3 Rotation about a coordinate axis 214
 B.1.4 Resultant coordinate system transformation 215
 B.1.5 Screw motion about a coordinate axis 216
 B.1.6 Rolling motion of a coordinate system 218
 B.1.7 Rolling of two coordinate systems 220
 B.2 Conversion of the Coordinate System Orientation 222
 B.3 Transformation of Surface Fundamental Forms 223
Contents

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Appendix C: Change of Surface Parameters</td>
<td>225</td>
</tr>
<tr>
<td>References</td>
<td>227</td>
</tr>
<tr>
<td>Bibliography</td>
<td>229</td>
</tr>
<tr>
<td>Index</td>
<td>233</td>
</tr>
</tbody>
</table>