Index

AOAC method for provitamin A carotenoids, 115–116
accelerated solvent extraction (ASE). See Pressurized liquid extraction (PLE)
accelerator mass spectrometry, 131–132
anthocyanins
antioxidant and biological functions, 153–155
high performance liquid chromatography (HPLC), 165–166
high performance liquid chromatography - mass spectrometry (HPLC-MS), 171–174
identification and characterization, 166–169
polymeric color analysis, 163–165
quantitation by UV/visible spectroscopy, 158–163
quantitative analysis, 170–171
sample preparation, 157–158
sample extraction and clean-up, 156–157
structures, sources and levels, 150–153
urine sampling and clean-up, 157
antioxidant phytochemicals
apples, 8–9
berries, 6–7
corn, 15–16
culinary herbs, 11–12
grapefruits, 8
grapes, 7–8
oat, 15
peppers, 10–11
rice, 14–15
root vegetables, 10
soybean, 12–13
tomato, 9–10
wheat, 13
API, 47
atmospheric pressure chemical ionization (APCI), 47, 128–129, 199, 229, 343
atmospheric pressure chemical photoionization (APPI), 129
capillary electrophoresis (CE), 223–224, 289
capillary zone electrophoresis (CZE), 224, 289
capillary supercritical fluid chromatography, 371
carotenoids, 112, 124–125
analysis of metabolites, 133–134
AOAC method for provitamin A carotenoids, 115–116
biological significance, 118
C30 analysis methods, 120–123
cis/trans carotenoid geometrical isomers, 117–118
development of C30 “carotenoid” column, 118–120
carotenoids (Continued)
- electrochemical detection, 117
- extraction, 107–110
- high performance liquid chromatography (HPLC), 116–117
- high performance liquid chromatography-nuclear magnetic resonance (HPLC-NMR), 124–125
- ionization, 126–129
- mass separation, 130–132
- mass spectrometry and HPLC-MS, 126
- matrix solid-phase extraction, 112
- optical isomers, 123–124
- resonance raman spectroscopy, 134
- sample preparation, 107
- saponification, 112–113
- structure, nomenclature and classification, 105–107
- supercritical fluid extraction (SFE), 111–112
- use of stable isotopes, 132–133
- uv-visible spectrophotometric methods, 114–115
- charged aerosol detection, 374
- column chromatography
 - general, 41
 - preparative, 231–216
- countercurrent chromatography
 - general, 41–42
 - phenolic acids, 94
- 4-(dimethylamino)cinnamaldehyde (DMAC), 252
- ellagitannins
 - fruits, nuts and oaks, 185–191
 - high performance liquid chromatography and HPLC-mass spectrometry analysis, 199–200
 - solvent selection and solid-phase extraction, 194–199
 - spectrophotometric methods, 191–193
 - structure, nomenclature and classification, 182–185
- electrochemical detection principle, 46
- carotenoids, 117
- flavanones, 297
- phenolic acids, 93
- tocopherols and tocotrienols, 374
- electrospray ionization principle, 47, 127–128
- anthocyanins, 166
- carotenoids, 127–128
- ellagitannins, 199
- flavanones, 298
- flavonols and flavones, 229
- phytosterols, 343
- proanthocyanidins, 262
- enzyme-linked immunoabsorbent (ELISA) assay, 378
- evaporative light scattering detection, 374
- flame ionization detection (FID) principle, 53–55
- flavanones
 - antioxidant and biological functions, 280–284
 - capillary electroseparation, 289
 - gas chromatography, 288–289
 - high performance liquid chromatography (HPLC), 292–297
 - high performance liquid chromatography-mass spectrometry (HPLC-MS), 298–300
 - nuclear magnetic resonance spectroscopy (NMR), 301–303
 - paper chromatography, 285–287
 - sample preparation, 289–292
 - spectrophotometric methods, 284–285
 - structures and sources, 276–280
 - thin-layer chromatography (TLC), 287
 - two-dimensional thin layer chromatography, 288
- flavonols and flavones
 - acid hydrolysis, 218
 - alkaline hydrolysis, 217–218
 - capillary electrophoresis, 223–224
 - enzyme hydrolysis, 218–219
 - extraction of plant surface lipophilic flavones, 210–211
 - extraction solvents, 209–210
 - liquid-liquid fractionation, 211
 - mass spectrometry, 228–244
Index

nuclear magnetic resonance spectroscopy (NMR), 228
paper chromatography, 219–222
preparative column chromatography, 213–217
preparative extraction, 211
purification and fractionation, 212
reversed phase HPLC, 223
sample preparation for high performance liquid chromatography (HPLC), 222–223
size exclusion chromatography, 212–213
structure, nomenclature and classification, 207–209
uv-visible spectrophotometry, 225–228
Folin-Ciocalteu assay, 252, 285
fourier transform infrared (FTIR) spectroscopy, 378
fluorescence detection principle, 46
phenolic acids, 93
proanthocyanidins, 256
tocopherols and tocotrienols, 374, 378
gas chromatography (GC) principle, 50–56
flavanones, 288–289
phenolic acids, 94–95
phytosterols, 336–338
proanthocyanidins, 256
tocopherols and tocotrienols, 371
gas chromatography mass spectrometry (GC-MS) principle, 55–57
high performance liquid chromatography (HPLC) principle, 43–44
anthocyanins, 165–167
carotenoids, 116–117
ellagitannins, 199–200
flavanones, 292–297
flavonols and flavones, 223
phenolic acids, 80
phytosterols, 338–340
proanthocyanidins, 256–259
tocopherols and tocotrienols, 371–373
homogenization principle, 30
high performance liquid chromatography mass spectrometry (HPLC-MS) principle, 47–50
anthocyanins, 166–169
carotenoids, 126–131
ellagitannins, 199–200
flavanones, 298, 300
flavonols and flavones, 228–244
phenolic acids, 94
phytosterols, 343
proanthocyanidins, 262–265
tocopherols and tocotrienols, 378
high speed countercurrent chromatography (HSCCC), 41–42
hydrochloric acid/butanol assay, 252
ion mobility spectrometry, 130
lipid oxidation and antioxidation property of phenolic phytochemicals, 3–6
liquid-liquid extraction, 28–29, 211
matrix-assisted laser desorption ionization time-of-flight mass spectrometry principle (MALDI-TOF-MS) principle, 49–50
anthocyanins, 166
carotenoids, 129
ellagitannins, 199–200
proanthocyanidins, 269–270
matrix solid phase dispersion (MSPD) principle, 37, 39
micellar electrokinetic capillary chromatography (MEKCC), 224, 289
microwave assisted extraction (MAE) principle, 33, 36–37
phenolic acids, 73, 77–78
multi-dimensional liquid chromatography principle, 45
multiple reaction monitoring (MRM), 49, 172
near infrared spectroscopy, 192
nuclear magnetic resonance (NMR) carotenoids, 124–125
flavonols and flavones, 228
flavanones, 301–303
phytosterols, 343
Index

paper chromatography, 219–222, 285–287
phenolic acids
 extraction and hydrolysis for chromatography analysis, 75–80
gas chromatography, 94–95
high performance liquid chromatography, 80–94
sample preparation for extraction and hydrolysis, 74–75
structure, nomenclature and classification, 69–74
phytosterols, 337–338
antioxidant and biological functions, 318–325
enzymatic kits, 326
fractionation, 332–333
gas chromatography, 336–338
high performance liquid chromatography - mass spectrometry (HPLC-MS), 343
high performance liquid chromatography (HPLC), 338–342
hydrolysis, 333–334
nuclear magnetic resonance (NMR), 343
sample preparation with digitonin, 327
spectrophotometric determination, 327–328
standards and quantification, 334–336
structures, sources and intake, 313–318
polymeric color analysis, 163–165
pressurized liquid extraction (PLE) principle, 30–31
carotenoids, 111
phenolic acids, 79
phytosterols, 329–330
tocopherols and tocotrienols, 368–369
pressurized solvent extraction (PSE). See Pressurized liquid extraction (PLE)
proanthocyanidins
antioxidant and biological functions, 250–251
columns and mobile phase, 257–262
depolymerization method, 267–269
detection, 256
determination of molecular size, 267
matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS), 269–270
peak identification and interpretation of mass spectra, 262–265
peak integration, standard curves, and method performance, 265–266
sample preparation, 252–255
standards, 255–256
structures and sources, 248–250
procyanidins: See proanthocyanidins
purification principle, 39–43
resonance raman spectroscopy, 134
sample hydrolysis
carotenoids, 112–113
flavonols and flavones, 217–219
phenolic acids, 75–76
phytosterols, 333–334
tocopherols and tocotrienols, 365–367
semi-preparative high performance liquid chromatography (HPLC)
principle, 43
ellagitannins, 198
flavonols and flavones, 217
proanthocyanidins, 255–256
solid-liquid extraction, 29
solid phase extraction principle, 39
anthocyanins, 157–158
ellagitannins, 194, 198–199
flavanones, 289, 291–292
flavonols and flavones, 212–213
phenolic acids, 73, 79, 80
phytosterols, 332–333
proanthocyanidins, 254–255
tocopherols and tocotrienols, 369–370
solvent extraction principle, 8–29
anthocyanins, 156–157
carotenoids, 109–110
ellagitannins, 194
flavanones, 289–291
flavonols and flavones, 209–211
phenolic acids, 75
phytosterols, 329–332
proanthocyanidins, 252–254
tocopherols and tocotrienols, 365–366
supercritical fluid extraction (SFE)
 principle, 31–33
carotenoids, 111–112
phenolic acids, 78–79
tocopherols and tocotrienols, 367–368
tandem mass spectrometry, 48, 130,
 167–168, 199, 298, 378
thermal conductivity detection
 principle, 53
thin layer chromatography (TLC)
ellagitannins, 198
flavanones, 287–288
flavonols and flavones, 216
phenolic acids, 73
phytosterols, 332
tocopherols and tocotrienols, 370
tocopherols and tocotrienols
antioxidant and biological
 functions, 359–363
chromatography methods, 370–378
sample preparation, 365–370
spectrophotometric methods, 363–365
structures, sources and
 nomenclature, 353–359
ultra performance liquid chromatography
 (UPLC) principle, 44–45
anthocyanins, 170–171
ellagitannins, 199
phenolic acids, 85–86
phytosterols, 344–345
ultrasound assisted extraction principle, 33
phenolic acids, 77
uv-visible detection principle, 45
flavanones, 292
phenolic acids, 86–92
uv-visible spectrophotometric methods
anthocyanins, 158, 163
carotenoids, 114–115
ellagitannins, 192–193
flavanones, 284–285
flavonols and flavones, 225–228
phytosterols, 327
proanthocyanidins, 252
tocopherols and tocotrienols, 363, 365
vanillin assay, 252