CONTENTS

Preface xvii

List of Figures xxi

List of Tables xxvii

CHAPTER 1 BASIC CONCEPTS AND PRELIMINARIES 1

1.1 Quality Revolution 1
1.2 Software Quality 5
1.3 Role of Testing 7
1.4 Verification and Validation 7
1.5 Failure, Error, Fault, and Defect 9
1.6 Notion of Software Reliability 10
1.7 Objectives of Testing 10
1.8 What Is a Test Case? 11
1.9 Expected Outcome 12
1.10 Concept of Complete Testing 13
1.11 Central Issue in Testing 13
1.12 Testing Activities 14
1.13 Test Levels 16
1.14 Sources of Information for Test Case Selection 18
1.15 White-Box and Black-Box Testing 20
1.16 Test Planning and Design 21
1.17 Monitoring and Measuring Test Execution 22
1.18 Test Tools and Automation 24
1.19 Test Team Organization and Management 26
1.20 Outline of Book 27

References 28
Exercises 30

CHAPTER 2 THEORY OF PROGRAM TESTING 31

2.1 Basic Concepts in Testing Theory 31
2.2 Theory of Goodenough and Gerhart 32
 2.2.1 Fundamental Concepts 32
 2.2.2 Theory of Testing 34
 2.2.3 Program Errors 34
 2.2.4 Conditions for Reliability 36
 2.2.5 Drawbacks of Theory 37
2.3 Theory of Weyuker and Ostrand 37

vii
CONTENTS

5.5 Data Flow Terms 119
5.6 Data Flow Testing Criteria 121
5.7 Comparison of Data Flow Test Selection Criteria 124
5.8 Feasible Paths and Test Selection Criteria 125
5.9 Comparison of Testing Techniques 126
5.10 Summary 128

CHAPTER 6 DOMAIN TESTING 135

6.1 Domain Error 135
6.2 Testing for Domain Errors 137
6.3 Sources of Domains 138
6.4 Types of Domain Errors 141
6.5 ON and OFF Points 144
6.6 Test Selection Criterion 146
6.7 Summary 154

REFERENCES 156
Exercises 156

CHAPTER 7 SYSTEM INTEGRATION TESTING 158

7.1 Concept of Integration Testing 158
7.2 Different Types of Interfaces and Interface Errors 159
7.3 Granularity of System Integration Testing 163
7.4 System Integration Techniques 164
 7.4.1 Incremental 164
 7.4.2 Top Down 167
 7.4.3 Bottom Up 171
 7.4.4 Sandwich and Big Bang 173
7.5 Software and Hardware Integration 174
 7.5.1 Hardware Design Verification Tests 174
 7.5.2 Hardware and Software Compatibility Matrix 177
7.6 Test Plan for System Integration 180
7.7 Off-the-Shelf Component Integration 184
 7.7.1 Off-the-Shelf Component Testing 185
 7.7.2 Built-in Testing 186
7.8 Summary 187

REFERENCES 189
Exercises 190

CHAPTER 8 SYSTEM TEST CATEGORIES 192

8.1 Taxonomy of System Tests 192
8.2 Basic Tests 194
 8.2.1 Boot Tests 194
 8.2.2 Upgrade/Downgrade Tests 195
CHAPTER 9 FUNCTIONAL TESTING 222

9.1 Functional Testing Concepts of Howden 222
 9.1.1 Different Types of Variables 224
 9.1.2 Test Vector 230
 9.1.3 Testing a Function in Context 231

9.2 Complexity of Applying Functional Testing 232

9.3 Pairwise Testing 235
 9.3.1 Orthogonal Array 236
 9.3.2 In Parameter Order 240

9.4 Equivalence Class Partitioning 244

9.5 Boundary Value Analysis 246

9.6 Decision Tables 248

9.7 Random Testing 252

9.8 Error Guessing 255

9.9 Category Partition 256

9.10 Summary 258
CONTENTS

CHAPTER 10 TEST GENERATION FROM FSM MODELS 265

10.1 State-Oriented Model 265
10.2 Points of Control and Observation 269
10.3 Finite-State Machine 270
10.4 Test Generation from an FSM 273
10.5 Transition Tour Method 273
10.6 Testing with State Verification 277
10.7 Unique Input–Output Sequence 279
10.8 Distinguishing Sequence 284
10.9 Characterizing Sequence 287
10.10 Test Architectures 291
 10.10.1 Local Architecture 292
 10.10.2 Distributed Architecture 293
 10.10.3 Coordinated Architecture 294
 10.10.4 Remote Architecture 295
10.11 Testing and Test Control Notation Version 3 (TTCN-3) 295
 10.11.1 Module 296
 10.11.2 Data Declarations 296
 10.11.3 Ports and Components 298
 10.11.4 Test Case Verdicts 299
 10.11.5 Test Case 300
10.12 Extended FSMs 302
10.13 Test Generation from EFSM Models 307
10.14 Additional Coverage Criteria for System Testing 313
10.15 Summary 315
 Literature Review 316
 References 317
 Exercises 318

CHAPTER 11 SYSTEM TEST DESIGN 321

11.1 Test Design Factors 321
11.2 Requirement Identification 322
11.3 Characteristics of Testable Requirements 331
11.4 Test Objective Identification 334
11.5 Example 335
11.6 Modeling a Test Design Process 345
11.7 Modeling Test Results 347
11.8 Test Design Preparedness Metrics 349
11.9 Test Case Design Effectiveness 350
11.10 Summary 351
 Literature Review 351
 References 353
 Exercises 353
CONTENTS

16.4 Effective Staffing of Test Engineers 501
16.5 Recruiting Test Engineers 504
 16.5.1 Job Requisition 504
 16.5.2 Job Profiling 505
 16.5.3 Screening Resumes 505
 16.5.4 Coordinating an Interview Team 506
 16.5.5 Interviewing 507
 16.5.6 Making a Decision 511
16.6 Retaining Test Engineers 511
 16.6.1 Career Path 511
 16.6.2 Training 512
 16.6.3 Reward System 513
16.7 Team Building 513
 16.7.1 Expectations 513
 16.7.2 Consistency 514
 16.7.3 Information Sharing 514
 16.7.4 Standardization 514
 16.7.5 Test Environments 514
 16.7.6 Recognitions 515
16.8 Summary 515
Literature Review 516
References 516
Exercises 517

CHAPTER 17 SOFTWARE QUALITY 519

17.1 Five Views of Software Quality 519
17.2 McCall’s Quality Factors and Criteria 523
 17.2.1 Quality Factors 523
 17.2.2 Quality Criteria 527
 17.2.3 Relationship between Quality Factors and Criteria 527
 17.2.4 Quality Metrics 530
17.3 ISO 9126 Quality Characteristics 530
17.4 ISO 9000:2000 Software Quality Standard 534
 17.4.1 ISO 9000:2000 Fundamentals 535
 17.4.2 ISO 9001:2000 Requirements 537
17.5 Summary 542
Literature Review 544
References 544
Exercises 545

CHAPTER 18 MATURITY MODELS 546

18.1 Basic Idea in Software Process 546
18.2 Capability Maturity Model 548
 18.2.1 CMM Architecture 549
 18.2.2 Five Levels of Maturity and Key Process Areas 550
 18.2.3 Common Features of Key Practices 553
 18.2.4 Application of CMM 553
 18.2.5 Capability Maturity Model Integration (CMMI) 554