INDEX

6% silicon steel, 460–462
90° domain walls, 282

Abampere (absolute ampere), 8
After-effect, magnetic, 424–426
Aging, of magnetic steel, 455
Alnico alloys, 485–487
Alternating-gradient magnetometer, 70
Amorphous ferromagnets, 133, 466–467
Ampere’s Law, 76, 77
Amperian currents, 10
Angular momentum, 98
Anhysteretic magnetization curve, 328
Anisotropies:
 comparison of, 264, 356–357
 mixed, 237–238
Anisotropy:
 magnetic, magnetocrystalline, 197–238
 constants, values of, 227–229
 constants, temperature dependence of, 227–229
 field, 226
 field, from resonance measurement, 435
 dispersion, in thin films, 406
 in polycrystals, 229–232
 interaction, 366
 uniaxial, 203
Anomalous loss, 448
Antiferromagnet, 12
Antiferromagnetic materials, table of, 152
Antiferromagnetism and ordering, 172–173

Antiferromagnetism, 132, 151–173
Antiferromagnets, anisotropy in, 232–234
Anti-theft/anti-shoplifting systems, 471
Approach to saturation, law of, 325–326
Armco iron, 454
ASTM, 23
 specifications for electrical steel, 460

Band theory of ferromagnetism, 133–140, 146
Barium ferrite, 190, 487–488
Barkhausen effect, Barkhausen noise, 302
Barkhausen jump, 313, 375, 449
 in single domain particles, 317
Barnett method, 103
Bethe–Slater curve, 131–132
Bifilar or non-inductive winding, 84–85
Bitter magnets, 28–31
Bitter method:
 for domain wall observation, 284–287
 limitations of, 287
Bloch (domain) wall, 276, 284
Blocking temperature, for
 superparamagnetism, 386
Bohr magneton, 7, 89
Bonded magnets, 494–495
Bragg Law, 163–164
Brillouin function, 104, 106, 121, 128
Brown’s Paradox, 374
Bubble domain memory, 397, 514–515
Buckling, magnetization reversal by, 371
Build factor, 452
INDEX

Canted spin structure, canted antiferromagnetism, 169–170
cgs (centimeter-gram-second) units, 2–16
Chain of spheres model, 364–366
Chattock coil, 42
Chromium dioxide (CrO₂), 145
Closure domains, 295
at inclusions, 307
Clustering, 339
Cobalt–iron alloys, 466
Coercive field, coercive force, 19–20
dependence on maximum magnetizing field, 379–382
intrinsic, 482
Coercivity, 19
intrinsic, 19
of fine particles, 360–364
angular variation of, 373
nucleation and pinning models of, 327
Coherent rotation mode of magnetization reversal, 364
Collective-electron theory, 133
Colossal magnetoresistance (CMR), 511
Compass, magnetic, 1
Compensation point, in ferrimagnets, 188
Constricted (hysteresis) loop, 343
Construction factor, 452
Cooling, of transformers, 461–462
Copper losses, in transformers, 445
CoPt permanent magnets, 493
Core box, 47
Core loss, 440
measurement of, 446–450
of low-carbon steel, 453
of non-oriented silicon steel, 456
or iron losses, in transformers, 445–450
Core, tape wound, 460
Corresponding states, law of, 119
Critical damping, in resonance, 435
Critical fields, upper and lower, 520
Critical indices, 127
Critical measurement time for superparamagnetism, 386
Critical size, for single domain behavior, 300
Critical state (Bean) model, 521–522
Critical temperature for superconductivity, 517
CrO₂, 145
Cross-tie (domain) wall, 402–405
Crystal anisotropy, 198–234
measurement of, 205–226
measurement from hysteresis loop areas, 222–226
measurement from magnetization curves, 218–222
in antiferromagnets, 232–234
in cubic crystals, 198–202
in hexagonal crystals, 202–204
origin of, 204–205
temperature dependence of, 205
Crystal field, 102
Crystallographic notation, 198
Crystallographic texture, 229
Cubic texture, 230, 453
Cubic-on-edge texture, 457–458
Cubic ferrites, structure of, 178
Curie constant, 91, 108
Curie Law, 91, 94
Curie method (susceptibility measurement), 82
Curie point, 20, 122
Ferromagnetic, 175, 185
Paramagnetic, 126
paramagnetic, in ferrimagnets, 185
Curie, Pierre, 91
Curie–Weiss law, 91, 115
for antiferromagnet, 153
Curling, magnetization reversal by, 368–370
Cyclic demagnetization, 20
Damping parameter (of domain wall), viscous, 413
Damping, measures of, 429
Demagnetization, 20, 47
Demagnetized state, 200
for magnetostriction measurement, 246–247
Demagnetizing curve, of permanent magnet, 478
Demagnetizing factor or coefficient, 52–62, 76
experimental determination, 64
fluxmetric (ballistic) or magnetometric, 55
of permanent magnet, 478
calculation of, 60
experimental, 59
in superconductors, 525
Demagnetizing field, 48–51, 53, 411
of superconductor, 519
Density of states, 135
Diamagnetic substances, 90–91
Diamagnetism, 12, 87–91
tory of, 90
Directional grain (DG) alnico, 486
Directional order, 338–344
in domain walls, 343
effect of composition, 341
effect of annealing temperature, 341–342
Dislocations, as source of residual stress, 310
Domain observation, 284–292
by optical methods, 288–290
by electron microscopy, 287–288
by scanning probes, 290–292
Domain rotation, 200, 314–325
Domains and domain walls, 116, 199–202
Domain structure, 292–299
in uniaxial crystals, 292–295
in cubic crystals, 295–299
of polycrystals, 299
effect on eddy-current loss, 444–445
in whiskers and platelets, 297–299
Domain wall, 125
Energy, 279–290
energy, measurement of, 283
equation of motion, 413
in ferrimagnetics, 283
inertia or mass, 413
mobility, 413
Domain wall motion, 302–314
and power loss, 449–450
hindrances to, 305–314
jerky, 303
reversible and irreversible, 312–313
Domain wall nucleation, 375–383
in thin films, 405
in whiskers, 378–379
Domain wall resonance, 435
Domain wall structure, 276–284
Domain wall velocity, 412
in whiskers, 379
measurement, 413–415
Domain walls in thin films, 400–408
Domains, closure, 295
Domains, fir-tree, 296
Ductile permanent magnets, 492–493
Earth’s magnetic field, 65, 73
Easy and hard directions in cubic crystals,
Table of, 202
Easy direction of magnetization, in cubic crystal, 198
Easy cone, easy plane of magnetization, 203
Eddy currents, 409–418, 440–445
in alternating fields, 412
macro and micro, 416
damping of domain wall motion, 415–417
damping, calculation of, 416
Eddy-current power loss, 443
effect of domain structure on, 444–445
Eddy-current shielding, 442
Effective moment (of an atom), 100, 106
Einstein–de Haas method, 103
Electrical steel, 452–461
properties of (Table), 461
Electromagnets, 33–36
Electron diffraction, 164
Electron paramagnetic or spin resonance (EPR), 433–435
Ellipsoid, prolate, oblate (planetary), general, 53
obilate or planetary, 320–321
prolate, 314–319
emu (electromagnetic unit), 6
Energy levels, 133
Energy product, of permanent magnet material, 480
Epstein test, for core loss, 446–448
Equation of motion, of domain wall, 413
Evaporation, to produce thin films, 399
Ewing, James Alfred, 15
Exchange anisotropy, 151, 394–397
Exchange coupling, 395–396
Exchange force, 129–133, 137
Exchange integral, 131
Exchange spring magnets, 492
Exchange stiffness, exchange constant, 276, 368–369
Extraction method (of measuring magnetization), 66–67
Fanning magnetization reversal, 364–368
Faraday effect, 290
Faraday’s Law, 11, 13, 16, 39, 409
Fe$_3$Nd$_2$B (neo), 491
Fe$_2$O$_3$, 1
Fe–Co alloys, 142–145
Fermi level, 137
Fermi–Dirac distribution, 139
Ferric induction, 19
Ferrimagnet, 12
Ferrimagnetic alloys, 193
Ferrimagnetic Curie point, 185
Ferrimagnetism, 175–194
Ferrites (ceramics), 175
mixed, 180
cubic, 175–176
hexagonal, 176
Ferrofluids, 285
Ferromagnet, ferromagnetism, 12, 115–149
amorphous, 133
Ferromagnetic:
allloys, 141–145
Curie point, 126
resonance, 435–436
Fir-tree domain pattern, 293
Flux compression, 31
Flux density, magnetic, 12
Flux penetration, 442, 443
Flux pinning, 521
Fluxgate magnetometer, 41–42, 469–470
Fluxmeter, 39–41, 67
calibration of, 40
Fluxoids, flux lines, 520
Foner magnetometer, 67–70
Forced magnetization, 125
of antiferromagnet, 160
Form effect, in measurement of magnetostriction, 258
Fourier analysis of torque curves, 212
Fringing flux, 481
g factor, 100
values of, 123
from resonance measurements, 434
g’ factor, 102
Gamma (magnetic unit), 4
Garnets, 193
Gauss (magnetic unit), 13
Gauss, Carl Friedrich, 13
Gaussmeter, 39
Giant magnetoresistive effect (GMR), 510
Gilbert equation, 436
Gilbert, William, 1
Gouy method (susceptibility measurement), 83
Grain growth, effect on magnetic properties, 330
Grain-oriented steel, 453
Granular superconductors, 524
Ground-fault interrupters, 468
Gyromagnetic effect, 102–103
Halbach cylinder, 36
Hall effect, 38–39
Hall probe, calibration of, 39
Hard magnetic materials, 18, 477–503
Hard ferrites, 487–488
Head positioners, 500
Heisenberg ferromagnet, 146
Helical spin structure, 169
Helmholtz coils, 26–28
Heusler alloys, 132, 145
Hexagonal ferrites, structure of, 190–192
Hopkinson effect, 205, 323
Hund’s Rule, 176
Hydrogen decrepitation, 490
Hysteresigraph, 46
Hysteresis loop, 18–21
shape of, 326–329
of a single particle, 381–382
major, minor, 20
re-entrant, 327
square, 326
of non-interacting single domain particles, 318
of oblate ellipsoid single domain, 320
of prolate ellipsoid single domains, 317
effect of plastic deformation on, 329–332
Hysteresis, 14
Image effect, 70–73
correction for, 72
Inclusions, as hindrances to wall motion, 305–308
Incoherent rotation mode of magnetization reversal, 364
Incommensurate spin-density wave, 171
Indirect exchange, 170
Induced anisotropy, 335–357
in thin films, 399–400
in thin films, measurement of, 400
Inductance, 17
Induction heating, 412
Induction, ferric, 19
Insulation, of electrical sheet steel, 461
Integrator, electronic, 39
Interaction anisotropy, 366
Intermediate state, 519
Internal friction, 429
Intrinsic coercivity, 19
Intrinsic coercive field, 482
Invar, 244
Inverse spinel, 178
Iron–cobalt alloys, 142–143
Josephson junction, 43
Kennelly convention (SI units), 18
Kerr effect, 289
Lamination factor, see stacking factor, 462
Laminations, 441
Landau–Lifshitz equation, 435–436
Lande equation, 102
Langevin function, 93, 118
Larmor frequency, 434
Laser scribing, of grain–oriented electrical steel, 459
Leakage flux, 481
Levitation, magnetic, 503–504
Linear variable differential transformer (LVDT), 214
Lines (of magnetic flux), 12
Load line, of permanent magnet, 478
Localized moment theory, 146
Lock-in amplifier, 68
Lodestone, 1
Lodex permanent magnets, 493–494
Logarithmic decrement, 429
Long-range order, 144
Lorentz field, 130
Lorentz microscopy for domain observation, 288
Loss factor (tan δ), 417–418
Losses and domain wall motion, 449–450
Losses:
in transformers, 445–450
in motors and generators, 450–452
Loudspeakers, 498–499
Low fields, magnetization in, 321–325
Maghemite (γ-Fe₂O₃), 192
Magnet wire, 26
Magnetic (computer) memory, 514–515
Magnetic after-effect, 424–426
Magnetic analysis, 147
Magnetic anisotropy, induced, 335–357
Magnetic annealing, 336–348
of substitutional solid solutions, 336–344
of interstitial solid solutions, 345–348
of single crystals, 342
of ferrites, 342–343
kinetics of, 348
Magnetic atom, 90
Magnetic balance, 81–82
Magnetic circuit, 44–47, 73–77
Magnetic constant, 17
Magnetic damping, 418–433
Magnetic dipole, 7
Magnetic domains see also Domain walls, 116
Magnetic field, 3
of a current, 8
measurement of, 38–43
background, 73
Magnetic flux, 11
Magnetic flux density, 13
Magnetic force microscope (MFM), 290–291
Magnetic induction, 13
Magnetic irradiation, 354–356
Magnetic levitation, 503–504
Magnetic materials, 10–16
Standard, 73
Magnetic moment, 5
cgs unit of, 6
Magnetic monopole, 3
Magnetic ordering, 168
Magnetic polarization, 18
Magnetic poles, 2
Magnetic potentiometer, 42
Magnetic random access memory (MRAM), 515
Magnetic recording:
Principles, 506–507
Analog, 505–509
ac bias in, 507–508
video, 508–509
materials for, 505–514
digital, 509
digital, materials for, 511–512
perpendicular, 512–513
Magnetic resonance imaging (MRI), 437
Magnetic resonance, 433–438
measurement of g factor, 103
Magnetic reversal or switching in thin films, 418–421
Magnetic separators, 502
Magnetic viscosity, 424–426
Magnetism, kinds of, 194
Magnetite (Fe₃O₄), 1
Magnetization curve, 14, 18–21
anhysteretic, 328
of Fe, Co, Ni, 115–116
Magnetization, intensity of, 6
in high fields, 325–326
in low fields, 321–325
Magnetization:
unit of, 7
measurement of, 66–73
saturation, 125
specific, 7
spontaneous, 116, 122
forced, 125
processes, 304–305
of ferrites, 180
reversal by coherent rotation, 364
reversal by curling, 368–370
reversal by fanning, 364–368
reversal by wall motion, 373–383
ripple in thin film, 408
non-uniform, 60
Magnetizing force, 4
Magnetocaloric effect, 146
Magnetocrystalline anisotropy.
See crystal anisotropy
Magnetoelastic energy, 261
Magnetomechanical damping, 430
Magnetomechanical effect, 259
Magnetomechanical factor, 102
Magnetometer, fluxgate, 469–470
Magnetometer, proton precession, 437
Magnetomotive force (mmf), 74, 77
Magneto-optic recording, 513–514
Magnetoresistance, 41, 271–272
giant (GMR), 272
colossal (CMR), 272
recording heads, 509–510
Magnetostatic energy, 235, 292
Magnetostriction, 241–269
as source of residual stress, 310
constants, for cubic crystals, 251
in hexagonal crystals, 251–252
of cubic crystals, 245–250
of polycrystals, 254–257
of rare earths, 258
of single crystals, 243–252
applications of, 268–270
forced, 242, 244
isotropic, 250, 262
measurement of, 243
origin of, 257–258
saturation, 241
spontaneous, 244
temperature dependence of, 252–254
Magnetostrictive effect, inverse, 259
Magnetostrictive transducers, 269
Magnetothermal analysis, 149
Major hysteresis loop, 20
Martensite in stainless steel, 148
Maxwell (unit of magnetic flux), 4
Maxwell, James Clerk, 4
Maxwell’s equations, 4
Maze pattern, 285
Measurement:
of core loss, 446–450
of magnetization, 66–73
susceptibility, 80–85
in open circuits, 62–66
Meissner effect, 517
Melt spinning, 466
Metallic glasses, 466–467
Metamagnetism, 234
Micromagnetics, 301
Minor hysteresis loop, 20
Mixed anisotropies, 237–238
Mobility, domain wall, 413
Molecular field, 96, 115, 153
 Constant, 120
 coefficient and Curie temperature, 133
Molecular field theory, 117–129
 of ferrimagnets, 178
 of ferrites, 183–189
 of antiferromagnets, 154–163
Moment, magnetic, of atom, 89–90
Monochromator, 166
Monopole, magnetic, 3
Motors, permanent magnet, 499
Nanocrystalline alloys, 467
National High Magnetic Field Laboratory (NHMFL), 31
National Institute of Standards and Technology (NIST), 73
Nb3Sn (superconductor), 32
NdFe14B (neo), 491
Néel (domain) wall, 283–284, 400–402
Néel temperature, 151
 in antiferromagnets, 156
Néel, Louis, 151
Neutron diffraction, 163–173
Neutron diffractometer, 166
Nitride magnets, 492
Noise, transformer, 462
Non-inductive or bifilar winding, 84–85
Normal magnetization curve, 19
 measurement of, 47
Normal spinel, 178
Nuclear magnetic resonance (NMR), 43, 436–438
Nuclear magneton, 436
Nucleation model of coercivity, 327
Nucleation-controlled coercivity, 490
Octahedral site, in spinel, 178
Oersted, Hans Christian, 2
Operational amplifier, 39
Orbital (electron) motion, 87–88
Order, long-range, 144
Ordering and antiferromagnetism, 172–173
Packing fraction, dependence of coercivity on, 362
Paramagnetism, 12
 classical theory of, 91–99
 quantum theory of, 99–103
Pauli, 111
 substances, 110
 of metals, 111
 saturation, 106–107
 Paramagnetic Curie point, 126
 of ferromagnetic, 185
 Para-process, 116, 125
 Parasitic ferromagnetism, 170
 Patterned media, 513
 Pauli exclusion principle, 130, 133, 177
 Pauli paramagnetism, 111
 in band theory, 139
 Permalloy, 259, 397, 463–465
 Permanent magnet materials, 477–503
 operating conditions of, 478–481
 testing of, 79–80
 steels, 484
 ductile, 493
 as laboratory field source, 36–38
 applications of, 498–502
Permeability, 15, 49
 Relative, 18
 of free space, 17
 of air, 16
 of ferrites versus frequency, 474–475
 apparent, 64
 differential, 15
 initial, 15
 maximum, 15
 real and imaginary, 417
Permeameters, 73–78
Permeance coefficient, of permanent magnet, 481
Perminvars, 466
Perminvar (hysteresis) loop, 343
Perpendicular magnetization, 209
Perpendicular recording, 512–513
Picture-frame sample, 47, 303
Pinning model of coercivity, 327
Planar flow casting, 461, 466
Plastic deformation,
 as source of residual stress, 311
 effect on hysteresis loops, 329–332
 effect on magnetic properties, 349–354
Poles, magnetic, 2
 strength, 3
 unit, 3
 force between, 2
Porosity, of ferrites, 472
Precession, 99
Preferred orientation, 229, 452–453
Proton precession magnetometer, 437
Pulsed fields, 31
 Quantum numbers, 133
 Quenched orbital moment, 102
Rare earth permanent magnets, 489–492
Rare earths, spin structure of, 171–172
Rationalized (SI) units, 16
Rayleigh region, law, relations, 321–323
Recoil permeability, 483
Recovery, effect on magnetic properties, 330
Recrystallization, 120–121
 effect on magnetic properties, 330
 secondary, 456
Reed relays, 469
Relative permeability, 18
Relaxation times, in magnetic after
 effect, 425
Reluctance, 74
Remanence, 20
Residual induction, 19
Residual stress, macro and micro, 309
 X-ray determination of, 310
Retained austenite, 147–148
Retentivity, 19
Rigid-band model, 137
Rock magnetism, 176, 393
Roll anisotropy, 350–352
Rotating-coil gaussmeter, 41
Rotational hysteresis integral, 373, 451
Rotational hysteresis, 373
 loss, 450–452
Rowland, H. A., 10
Rowland ring, 10, 13
Saturation induction, 19
Saturation magnetization, 14, 125
Secondary recrystallization, 456
SEMPA (scanning electron microscopy
 with polarization analysis), 292
Separation of losses, 447–449
Separators, magnetic, 502
Shape anisotropy, 234–237
Shielding, magnetic, 51–52, 469
Shifted (hysteresis) loop, 394
Short-range order, 339
SI (Système International) units, 2, 16–18
Silicon steel:
 grain-oriented, 456–460
 non-oriented, 454–456
Single domain particles, 300–301, 314
 static and dynamic, 372
Single domain versus multi-domain behavior, 360
Single-domain particle magnets (Lodex),
 493–494
single-strip testers, for core loss, 447
Sintering, of ferrites, 472
Size effect, 359
Skin depth, 442
Skin effect, 441
Slater–Pauling curve, 143
Sm₂Co₁₇, 490
Sm₂Coy, 489–490
Snoek limit, 418
Soft ferrites, 471–475
 production of, 471–472
Soft magnetic materials, 18, 439–476,
 463–466
 applications of, 467–471
Solenoid, 19
 field of, 9, 24
 superconducting, 31–32
Solid solution, 141
Sommerfeld convention (SI units), 17
Sonar, 269
Space quantization, 99
Specific heat, ferromagnetic, 145
Specific magnetization, 119
Spectroscopic splitting factor, 100
Spike domains, 295, 299
Spin (electron) motion, 87–88
Spin arrangement in ferromagnetic, 171
Spin axis, in antiferromagnets, 157
Spin bias, 397
Spin cluster, 127
 in ferrimagnetics, 186
Spin structure of rare earths, 171–172
Spin valve, 397, 510
Spinel, 178–180
 normal and inverse, 178
Spin flop ping, 232–234
Spinodal decomposition, in alnico, 485
Spin-only moment, 108
Spin-orbit coupling, 102, 204
Spiral spin structure, 169
Spontaneous magnetization, 116, 122
 of ferrimagnets, 175
 in antiferromagnets, 156–157
Sputtering, to produce thin films, 398
Square (hysteresis) loop, 303, 326
SQUID magnetometer, 43, 73
Stability, of permanent magnets, 495–497
Stabilization field, 423
 of domain wall, 344
Stacking factor, transformer, 462
Standard magnetic materials, 73
Static and dynamic single domain particles, 372
Steel permanent magnets, 1, 484
Steel, low-carbon, 453–454
Stoner–Wohlfarth behavior, mode, 314–325, 364
Strain gage, 243
Stress anisotropy, 264
Stress annealing, 348–349
Stress:
 effect on magnetic properties, 258–266
 effect on magnetostriction, 266–268
Stress, residual, as hindrance to wall motion,
 308–312
Strontium ferrite, 192, 487–488
Structure-sensitive properties, 115
Sublattice, in antiferromagnet, 153
Sublattice magnetization,
in antiferromagnet, 156
in ferrimagnets, 187
Superconducting magnetization, 518
measurement of, 518
Superconducting solenoids, 31–32
Superconductivity, 517–526
Superconductors:
type I, 519–520
type II, 520–523
Superexchange, 170
Superlattice lines, 165
Superparamagnetism, 362, 383–394
in alloys, 390–394
characteristics of, 384
Surface roughness as hindrance to wall motion, 308
Susceptibility, magnetic, 14
measurement of, 80–85
of superconductors, 523–524
antiferromagnetic powder, 161
versus temperature of antiferromagnet, 151
Switching asteroid/asteroid, 420–421
Tape-wound core, 47, 460
Temperature compensation alloys, 467
Temperature effects on permanent magnets, 496–497
Terfenol-D, 269
Tesla (unit of flux density), 17
Tesla, Nicola, 17
Tesla meter, 39
Tetrahedral site, in spinel, 178
Texture, crystallographic, 452–453
Thermal demagnetization, 20
Thermal effects in ferromagnets, 145–146
Thermal fluctuation after effect, 426–428
Thermally-assisted writing, 513
Thin films, 397–408
anisotropy dispersion in, 406
domain walls in, 400–408
induced anisotropy in, 399–400
magnetic reversal or switching in, 418–421
magnetization ripple in, 408
production of, 397–399
Time decrease of permeability, 422–424
Time effects in magnetization, 421–428
Torque curves, 206–212
of grain-oriented steel, 457, 459
Fourier analysis of, 212
Torque magnetometers, 212–217
stability condition, 212–213
calibration of, 215–217
Torsion pendulum, 430
for anisotropy measurement, 217–218
Transformers, 440–445
hum, 268
noise, 462
stacking factor, 462
cooling of, 461–462
losses in, 445–450
Uniaxial anisotropy, 203
Unidirectional anisotropy, 395
Unit pole, 3
Vibrating-reed magnetometer, 70
Vibrating-sample magnetometer (VSM), 67–70
calibration of, 68
Villari reversal, 259
Wasp-waisted (hysteresis) loop, 343
Weber (unit of magnetic flux), 17
Weiss, Pierre, 96
Whiskers and platelets, 297–299
magnetization reversal in, 372
Wigglers and undulators, 501
Zeeman effect, 88
γ-Fe₂O₃, 192
ΔE effect, 270–271