Contents

Preface xvii
Contributors xix

1 Volatility Models 1

1.1 Introduction, 1
1.2 GARCH, 1
 1.2.1 Univariate GARCH, 1
 1.2.1.1 Structure of GARCH Models, 3
 1.2.1.2 Early GARCH Models, 5
 1.2.1.3 Probability Distributions for z_t, 7
 1.2.1.4 New GARCH Models, 9
 1.2.1.5 Explanation of Volatility Clustering, 15
 1.2.1.6 Literature and Software, 16
 1.2.1.7 Applications of Univariate GARCH, 16
 1.2.2 Multivariate GARCH, 18
 1.2.2.1 Structure of MGARCH Models, 19
 1.2.2.2 Conditional Correlations, 19
 1.2.2.3 Factor Models, 23
1.3 Stochastic Volatility, 25
 1.3.1 Leverage Effect, 26
 1.3.2 Estimation, 27
 1.3.3 Multivariate SV Models, 28
 1.3.4 Model Selection, 30
 1.3.5 Empirical Example: S&P 500, 31
 1.3.6 Literature, 32
1.4 Realized Volatility, 33
 1.4.1 Realized Variance, 33
 1.4.1.1 Empirical Application, 40
 1.4.2 Realized Covariance, 44
PART ONE

Autoregressive Conditional Heteroskedasticity and Stochastic Volatility

2 Nonlinear Models for Autoregressive Conditional Heteroskedasticity 49

2.1 Introduction, 49
2.2 The Standard GARCH Model, 50
2.3 Predecessors to Nonlinear GARCH Models, 51
2.4 Nonlinear ARCH and GARCH Models, 52
 2.4.1 Engle’s Nonlinear GARCH Model, 52
 2.4.2 Nonlinear ARCH Model, 53
 2.4.3 Asymmetric Power GARCH Model, 53
 2.4.4 Smooth Transition GARCH Model, 54
 2.4.5 Double Threshold ARCH Model, 56
 2.4.6 Neural Network ARCH and GARCH Models, 57
 2.4.7 Time-Varying GARCH, 58
 2.4.8 Families of GARCH Models and their Probabilistic Properties, 59
2.5 Testing Standard GARCH Against Nonlinear GARCH, 60
 2.5.1 Size and Sign Bias Tests, 60
 2.5.2 Testing GARCH Against Smooth Transition GARCH, 61
 2.5.3 Testing GARCH Against Artificial Neural Network GARCH, 62
2.6 Estimation of Parameters in Nonlinear GARCH Models, 63
 2.6.1 Smooth Transition GARCH, 63
 2.6.2 Neural Network GARCH, 64
2.7 Forecasting with Nonlinear GARCH Models, 64
 2.7.1 Smooth Transition GARCH, 64
 2.7.2 Asymmetric Power GARCH, 66
2.8 Models Based on Multiplicative Decomposition of the Variance, 67
2.9 Conclusion, 68
Acknowledgments, 69
3 Mixture and Regime-Switching GARCH Models

3.1 Introduction, 71
3.2 Regime-Switching GARCH Models for Asset Returns, 73
 3.2.1 The Regime-Switching Framework, 73
 3.2.2 Modeling the Mixing Weights, 75
 3.2.3 Regime-Switching GARCH Specifications, 78
3.3 Stationarity and Moment Structure, 81
 3.3.1 Stationarity, 83
 3.3.2 Moment Structure, 87
3.4 Regime Inference, Likelihood Function, and Volatility Forecasting, 89
 3.4.1 Determining the Number of Regimes, 92
 3.4.2 Volatility Forecasts, 92
 3.4.3 Application of MS-GARCH Models to Stock Return Indices, 93
3.5 Application of Mixture GARCH Models to Density Prediction and Value-at-Risk Estimation, 97
 3.5.1 Value-at-Risk, 97
 3.5.2 Data and Models, 98
 3.5.3 Empirical Results, 99
3.6 Conclusion, 102
Acknowledgments, 102

4 Forecasting High Dimensional Covariance Matrices

4.1 Introduction, 103
4.2 Notation, 104
4.3 Rolling Window Forecasts, 104
 4.3.1 Sample Covariance, 105
 4.3.2 Observable Factor Covariance, 105
 4.3.3 Statistical Factor Covariance, 106
 4.3.4 Equicorrelation, 107
 4.3.5 Shrinkage Estimators, 108
4.4 Dynamic Models, 109
 4.4.1 Covariance Targeting Scalar VEC, 109
 4.4.2 Flexible Multivariate GARCH, 110
 4.4.3 Conditional Correlation GARCH Models, 111
 4.4.4 Orthogonal GARCH, 113
 4.4.5 RiskMetrics, 114
 4.4.6 Alternative Estimators for Multivariate GARCH Models, 116
4.5 High Frequency Based Forecasts, 117
 4.5.1 Realized Covariance, 118
 4.5.2 Mixed-Frequency Factor Model Covariance, 119
 4.5.3 Regularization and Blocking Covariance, 119
4.6 Forecast Evaluation, 123
 4.6.1 Portfolio Constraints, 124
4.7 Conclusion, 125
Acknowledgments, 125

5 Mean, Volatility, and Skewness Spillovers in Equity Markets 127
5.1 Introduction, 127
5.2 Data and Summary Statistics, 129
 5.2.1 Data, 129
 5.2.2 Time-Varying Skewness (Univariate Analysis), 132
 5.2.3 Spillover Models, 135
5.3 Empirical Results, 138
 5.3.1 Parameter Estimates, 138
 5.3.2 Spillover Effects in Variance and Skewness, 139
 5.3.2.1 Variance Ratios, 139
 5.3.2.2 Pattern and Size of Skewness Spillovers, 141
5.4 Conclusion, 144
Acknowledgments, 145

6 Relating Stochastic Volatility Estimation Methods 147
6.1 Introduction, 147
6.2 Theory and Methodology, 149
 6.2.1 Quasi-Maximum Likelihood Estimation, 150
 6.2.2 Gaussian Mixture Sampling, 151
 6.2.3 Simulated Method of Moments, 152
 6.2.4 Methods Based on Importance Sampling, 153
 6.2.4.1 Approximating in the Basic IS Approach, 154
 6.2.4.2 Improving on IS with IIS, 155
 6.2.4.3 Alternative Efficiency Gains with EIS, 156
6.2.5 Alternative Sampling Methods: SSS and MMS, 158
6.3 Comparison of Methods, 160
 6.3.1 Setup of Data-Generating Process and Estimation Procedures, 160
 6.3.2 Parameter Estimates for the Simulation, 161
 6.3.3 Precision of IS, 163
 6.3.4 Precision of Bayesian Methods, 164
6.4 Estimating Volatility Models in Practice, 165
 6.4.1 Describing Return Data of Goldman Sachs and IBM Stock, 165
 6.4.2 Estimating SV Models, 167
 6.4.3 Extracting Underlying Volatility, 168
 6.4.4 Relating the Returns in a Bivariate Model, 169
6.5 Conclusion, 172

7 Multivariate Stochastic Volatility Models 175
 7.1 Introduction, 175
 7.2 MSV Model, 176
 7.2.1 Model, 176
 7.2.1.1 Likelihood Function, 177
 7.2.1.2 Prior Distribution, 178
 7.2.1.3 Posterior Distribution, 179
 7.2.2 Bayesian Estimation, 179
 7.2.2.1 Generation of α, 179
 7.2.2.2 Generation of ϕ, 181
 7.2.2.3 Generation of Σ, 181
 7.2.3 Multivariate-t Errors, 181
 7.2.3.1 Generation of ν, 182
 7.2.3.2 Generation of λ, 183
 7.3 Factor MSV Model, 183
 7.3.1 Model, 183
 7.3.1.1 Likelihood Function, 184
 7.3.1.2 Prior and Posterior Distributions, 185
 7.3.2 Bayesian Estimation, 185
 7.3.2.1 Generation of α, ϕ, and Σ, 186
 7.3.2.2 Generation of f, 187
 7.3.2.3 Generation of λ, 187
 7.3.2.4 Generation of β, 188
7.3.2.5 Generation of ν, 188
7.4 Applications to Stock Indices Returns, 188
 7.4.1 S&P 500 Sector Indices, 188
 7.4.2 MSV Model with Multivariate t Errors, 189
 7.4.2.1 Prior Distributions, 189
 7.4.2.2 Estimation Results, 189
 7.4.3 Factor MSV Model, 192
 7.4.3.1 Prior Distributions, 192
 7.4.3.2 Estimation Results, 192
7.5 Conclusion, 195
7.6 Appendix: Sampling α in the MSV Model, 195
 7.6.1 Single-Move Sampler, 195
 7.6.2 Multi-move Sampler, 196

8 Model Selection and Testing of Conditional and Stochastic Volatility Models 199
 8.1 Introduction, 199
 8.1.1 Model Specifications, 200
 8.2 Model Selection and Testing, 202
 8.2.1 In-Sample Comparisons, 202
 8.2.2 Out-of-Sample Comparisons, 206
 8.2.2.1 Direct Model Evaluation, 206
 8.2.2.2 Indirect Model Evaluation, 209
 8.3 Empirical Example, 211
 8.4 Conclusion, 221

PART TWO
Other Models and Methods

9 Multiplicative Error Models 225
 9.1 Introduction, 225
 9.2 Theory and Methodology, 226
 9.2.1 Model Formulation, 226
 9.2.1.1 Specifications for μ_t, 227
 9.2.1.2 Specifications for ϵ_t, 230
 9.2.2 Inference, 230
 9.2.2.1 Maximum Likelihood Inference, 230
 9.2.2.2 Generalized Method of Moments Inference, 233
 9.3 MEMs for Realized Volatility, 235
 9.4 MEM Extensions, 242
10 Locally Stationary Volatility Modeling

10.1 Introduction, 249
10.2 Empirical Evidences, 251
10.2.1 Structural Breaks, Nonstationarity, and Persistence, 251
10.2.2 Testing Stationarity, 253
10.3 Locally Stationary Processes and their Time-Varying Autocovariance Function, 256
10.4 Locally Stationary Volatility Models, 260
10.4.1 Multiplicative Models, 260
10.4.2 Time-Varying ARCH Processes, 261
10.4.3 Adaptive Approaches, 264
10.5 Multivariate Models for Locally Stationary Volatility, 266
10.5.1 Multiplicative Models, 266
10.5.2 Adaptive Approaches, 267
10.6 Conclusions, 267
Acknowledgments, 268

11.1 Introduction, 269
11.2 Nonparametric and Semiparametric Univariate Volatility Models, 271
11.2.1 Stationary Volatility Models, 271
11.2.1.1 The Simplest Nonparametric Volatility Model, 271
11.2.1.2 Additive Nonparametric Volatility Model, 273
11.2.1.3 Functional-Coefficient Volatility Model, 276
11.2.1.4 Single-Index Volatility Model, 277
11.2.1.5 Stationary Semiparametric ARCH (∞) Models, 278
11.2.1.6 Semiparametric Combined Estimator of Volatility, 279
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>11.2.1.7</td>
<td>Semiparametric Inference in GARCH-in-Mean Models</td>
<td>280</td>
</tr>
<tr>
<td>11.2.2</td>
<td>Nonstationary Univariate Volatility Models</td>
<td>281</td>
</tr>
<tr>
<td>11.2.3</td>
<td>Specification of the Error Density</td>
<td>282</td>
</tr>
<tr>
<td>11.2.4</td>
<td>Nonparametric Volatility Density Estimation</td>
<td>283</td>
</tr>
<tr>
<td>11.3</td>
<td>Nonparametric and Semiparametric Multivariate Volatility Models</td>
<td>284</td>
</tr>
<tr>
<td>11.3.1</td>
<td>Modeling the Conditional Covariance Matrix under Stationarity</td>
<td>285</td>
</tr>
<tr>
<td>11.3.1.1</td>
<td>Hafner, van Dijk, and Franses’ Semiparametric Estimator</td>
<td>285</td>
</tr>
<tr>
<td>11.3.1.2</td>
<td>Long, Su, and Ullah’s Semiparametric Estimator</td>
<td>286</td>
</tr>
<tr>
<td>11.3.1.3</td>
<td>Test for the Correct Specification of Parametric Conditional Covariance Models</td>
<td>286</td>
</tr>
<tr>
<td>11.3.2</td>
<td>Specification of the Error Density</td>
<td>287</td>
</tr>
<tr>
<td>11.4</td>
<td>Empirical Analysis</td>
<td>288</td>
</tr>
<tr>
<td>11.5</td>
<td>Conclusion</td>
<td>291</td>
</tr>
<tr>
<td>Acknowledgments</td>
<td>291</td>
<td></td>
</tr>
</tbody>
</table>

12 Copula-Based Volatility Models 293

<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>12.1</td>
<td>Introduction</td>
<td>293</td>
</tr>
<tr>
<td>12.2</td>
<td>Definition and Properties of Copulas</td>
<td>294</td>
</tr>
<tr>
<td>12.2.1</td>
<td>Sklar’s Theorem</td>
<td>295</td>
</tr>
<tr>
<td>12.2.2</td>
<td>Conditional Copula</td>
<td>296</td>
</tr>
<tr>
<td>12.2.3</td>
<td>Some Commonly Used Bivariate Copulas</td>
<td>296</td>
</tr>
<tr>
<td>12.2.4</td>
<td>Copula-Based Dependence Measures</td>
<td>298</td>
</tr>
<tr>
<td>12.3</td>
<td>Estimation</td>
<td>300</td>
</tr>
<tr>
<td>12.3.1</td>
<td>Exact Maximum Likelihood</td>
<td>300</td>
</tr>
<tr>
<td>12.3.2</td>
<td>IFM</td>
<td>301</td>
</tr>
<tr>
<td>12.3.3</td>
<td>Bivariate Static Copula Models</td>
<td>301</td>
</tr>
<tr>
<td>12.4</td>
<td>Dynamic Copulas</td>
<td>304</td>
</tr>
<tr>
<td>12.4.1</td>
<td>Early Approaches</td>
<td>305</td>
</tr>
<tr>
<td>12.4.2</td>
<td>Dynamics Based on the DCC Model</td>
<td>305</td>
</tr>
<tr>
<td>12.4.3</td>
<td>Alternative Methods</td>
<td>307</td>
</tr>
<tr>
<td>12.5</td>
<td>Value-at-Risk</td>
<td>308</td>
</tr>
<tr>
<td>12.6</td>
<td>Multivariate Static Copulas</td>
<td>310</td>
</tr>
<tr>
<td>12.6.1</td>
<td>Multivariate Archimedean Copulas</td>
<td>310</td>
</tr>
<tr>
<td>12.6.2</td>
<td>Vines</td>
<td>313</td>
</tr>
<tr>
<td>12.7</td>
<td>Conclusion</td>
<td>315</td>
</tr>
</tbody>
</table>
PART THREE
Realized Volatility

13 Realized Volatility: Theory and Applications 319

13.1 Introduction, 319
13.2 Modeling Framework, 320
 13.2.1 Efficient Price, 320
 13.2.2 Measurement Error, 322
13.3 Issues in Handling Intraday Transaction Databases, 323
 13.3.1 Which Price to Use?, 324
 13.3.2 High Frequency Data Preprocessing, 326
 13.3.3 How to and How Often to Sample?, 326
13.4 Realized Variance and Covariance, 329
 13.4.1 Univariate Volatility Estimators, 329
 13.4.1.1 Measurement Error, 330
 13.4.2 Multivariate Volatility Estimators, 333
 13.4.2.1 Measurement Error, 336
13.5 Modeling and Forecasting, 337
 13.5.1 Time Series Models of (co) Volatility, 337
 13.5.2 Forecast Comparison, 339
13.6 Asset Pricing, 340
 13.6.1 Distribution of Returns Conditional on the Volatility Measure, 340
 13.6.2 Application to Factor Pricing Model, 341
 13.6.3 Effects of Algorithmic Trading, 342
 13.6.4 Application to Option Pricing, 342
13.7 Estimating Continuous Time Models, 344

14 Likelihood-Based Volatility Estimators in the Presence of Market Microstructure Noise 347

14.1 Introduction, 347
14.2 Volatility Estimation, 349
 14.2.1 Constant Volatility and Gaussian Noise Case: MLE, 349
 14.2.2 Robustness to Non-Gaussian Noise, 351
 14.2.3 Implementing Maximum Likelihood, 351
 14.2.4 Robustness to Stochastic Volatility: QMLE, 352
 14.2.5 Comparison with Other Estimators, 355
 14.2.6 Random Sampling and Non-i.i.d. Noise, 356
14.3 Covariance Estimation, 356
14.4 Empirical Application: Correlation between Stock and Commodity Futures, 359

14.5 Conclusion, 360

Acknowledgments, 361

15 HAR MODELING FOR REALIZED VOLATILITY FORECASTING

15.1 Introduction, 363

15.2 Stylized Facts on Realized Volatility, 365

15.3 Heterogeneity and Volatility Persistence, 366

- **15.3.1 Genuine Long Memory or Superposition of Factors?**, 369

15.4 HAR Extensions, 370

- **15.4.1 Jump Measures and Their Volatility Impact**, 370
- **15.4.2 Leverage Effects**, 372
- **15.4.3 General Nonlinear Effects in Volatility**, 373

15.5 Multivariate Models, 375

15.6 Applications, 378

15.7 Conclusion, 381

16 FORECASTING VOLATILITY WITH MIDAS

16.1 Introduction, 383

16.2 MIDAS Regression Models and Volatility Forecasting, 384

- **16.2.1 MIDAS Regressions**, 384
- **16.2.2 Direct Versus Iterated Volatility Forecasting**, 386
- **16.2.3 Variations on the Theme of MIDAS Regressions**, 389
- **16.2.4 Microstructure Noise and MIDAS Regressions**, 390

16.3 Likelihood-Based Methods, 391

- **16.3.1 Risk-Return Trade-Off**, 391
- **16.3.2 HYBRID GARCH Models**, 393
- **16.3.3 GARCH-MIDAS Models**, 398

16.4 Multivariate Models, 399

16.5 Conclusion, 401

17 JUMPS

17.1 Introduction, 403

- **17.1.1 Some Models Used in Finance and Our Framework**, 403
- **17.1.2 Simulated Models Used in This Chapter**, 407
- **17.1.3 Realized Variance and Quadratic Variation**, 409
17.1.4 Importance of Disentangling, 410
17.1.5 Further Notation, 411
17.2 How to Disentangle: Estimators of Integrated Variance and
Integrated Covariance, 411
17.2.1 Bipower Variation, 413
17.2.2 Threshold Estimator, 416
17.2.3 Threshold Bipower Variation, 419
17.2.4 Other Methods, 421
 17.2.4.1 Realized Quantile, 421
 17.2.4.2 MinRV and MedRV, 422
 17.2.4.3 Realized Outlyingness Weighted
 Variation, 422
 17.2.4.4 Range Bipower Variation, 423
 17.2.4.5 Generalization of the Realized
 Range, 424
 17.2.4.6 Duration-Based Variation, 425
 17.2.4.7 Irregularly Spaced Observations, 425
17.2.5 Comparative Implementation on Simulated
Data, 426
17.2.6 Noisy Data, 427
17.2.7 Multivariate Assets, 432
17.3 Testing for the Presence of Jumps, 433
 17.3.1 Confidence Intervals, 434
 17.3.2 Tests Based on $\hat{IV}_n - RV_n$ or on
 $1 - \hat{IV}_n/RV_n$, 434
 17.3.3 Tests Based on Normalized Returns, 436
 17.3.4 PV-Based Tests, 439
 17.3.4.1 Remarks, 440
 17.3.5 Tests Based on Signature Plots, 441
 17.3.6 Tests Based on Observation of Option Prices, 442
 17.3.6.1 Remarks, 442
 17.3.7 Indirect Test for the Presence of Jumps, 443
 17.3.7.1 In the Presence of Noise, 443
 17.3.8 Comparisons, 443
17.4 Conclusions, 444
Acknowledgments, 445

18 Nonparametric Tests for Intraday
Jumps: Impact of Periodicity and
Microstructure Noise 447
18.1 Introduction, 447
18.2 Model, 449
18.3 Price Jump Detection Method, 450