Contents

Preface xi
List of Contributors xv

1. Silicon Science and Technology as the Background of the Current and Future Knowledge Society
Sergio Pizzini 1

1.1 Introduction 1
1.2 Silicon Birth from a Thermonuclear Nucleosynthetic Process 2
1.3 Silicon Key Properties 2
 1.3.1 Chemical and Structural Properties 2
 1.3.2 Point Defects 7
 1.3.3 Radiation Damage and Radiation Hardness 7
1.4 Advanced Silicon Applications 9
 1.4.1 Silicon Radiation Detectors 9
 1.4.2 Photovoltaic Cells for Space Vehicles and Satellite Applications 11
 1.4.3 Advanced Components Based on the Dislocation Luminescence in Silicon 12
 1.4.4 Silicon Nanostructures 14
References 15

2. Processes
Bruno Ceccaroli and Sergio Pizzini 21

2.1 Introduction 21
2.2 Gas-Phase Processes 23
 2.2.1 Preparation and Synthesis of Volatile Silicon Compounds 23
 2.2.2 Purification of Volatile Silicon Compounds 30
 2.2.3 Decomposition of Volatile Precursors to Elemental Silicon 30
 2.2.4 Most Common Reactors 33
 2.2.5 Recovery of By-Products 38
2.3 Production of MG and UMG Silicon and Further Refining Up to Solar Grade by Chemical and Physical Processes 40
 2.3.1 MG Silicon Production 42
 2.3.2 Metallurgical Refining Processes 47
 2.3.3 Metal–Metal Extraction Processes 52
2.3.4 Solid/Liquid Extraction Techniques 54
2.3.5 Final Purification by Directional Solidification 55
2.3.6 Solar-Grade Silicon Production from Pure Raw Materials or Via the Direct Route 58
2.4 Fluoride Processes 59
2.5 Silicon Production/Refining with High-Temperature Plasmochemical Processes 61
 2.5.1 Silicon Production Via Plasma Processes 62
 2.5.2 Silicon Refining Via Plasma Processes 63
2.6 Electrochemical Processes: Production of Silicon Without Carbon as Reductant 64
2.7 Conclusions 68
Acknowledgements 69
References 70

3. Role of Impurities in Solar Silicon 79
Gianluca Coletti, Daniel Macdonald and Deren Yang

3.1 Introduction 79
3.2 Sources and Refinements of Impurities 79
3.3 Segregation of Impurities During Silicon Growth 86
 3.3.1 Equilibrium Segregation Coefficients 86
 3.3.2 Effective Segregation Coefficient 87
 3.3.3 Distribution of Impurities in Silicon Crystal Due to Segregation 90
3.4 Role of Metallic Impurities 92
 3.4.1 Solubility and Diffusivity 92
 3.4.2 Impact on Charge-Carrier Recombination 94
 3.4.3 Modeling the Impact of Metallic Impurities on the Solar-Cell Performance 96
3.5 Role of Dopants 101
 3.5.1 Carrier Mobilities in Compensated Silicon 101
 3.5.2 Recombination in Compensated Silicon 103
 3.5.3 Dopant-Related Recombination Centers 105
 3.5.4 Segregation Effects During Ingot Growth 106
 3.5.5 Detecting Dopants in Compensated Silicon 107
3.6 Role of Light Elements 108
 3.6.1 Oxygen 108
 3.6.2 Carbon 109
 3.6.3 Nitrogen 111
 3.6.4 Germanium 113
3.7 Arriving at Solar-Grade Silicon Feedstock Definitions 114
References 118

4. Gettering Processes and the Role of Extended Defects 127
Michael Seibt and Vitaly Kveder

4.1 Introduction 127
6.2 Review of Analytical Techniques
6.3 GDMS Analysis of PV Si
6.4 SIMS Analysis of PV Si
6.5 Applications of SIMS and GDMS for PV Si Feedstock Studies
 6.5.1 Impurity Segregation in Directional Solidified (DS) Silicon Blocks
 6.5.2 Specification of [C], [O] and [N] in Solar-Grade Silicon Feedstock to be Used in DS Furnaces
 6.5.3 SIMS Capability for Reduced-Cost Measurement of [C, O, B, P]
 6.5.4 Problems in Conversion Between Resistivity and Dopant Concentration in Highly Compensated Silicon

References

7. Thin-Film Deposition Processes
 J.K. Rath

7.1 Introduction
7.2 Deposition Techniques of Thin-Film Silicon
 7.2.1 Standard Radio-Frequency Plasma-Enhanced CVD
 7.2.2 Very High Frequency Plasma-Enhanced CVD
 7.2.3 Microwave Plasma-Enhanced CVD
 7.2.4 Expanded Thermal Plasma (ETP) Deposition
 7.2.5 Low-Energy Plasma-Enhanced PECVD
 7.2.6 Hot-Wire CVD

7.3 In Situ Diagnosis of Growth Conditions
 7.3.1 Electrical: Current–Voltage (I–V) Probe
 7.3.2 Optical Emission Spectroscopy (OES)
 7.3.3 Infrared Spectroscopy
 7.3.4 Ellipsometry
 7.3.5 Ion Energy Probe

7.4 Challenges of Deposition at High Growth Rates and Low Substrate Temperatures
 7.4.1 Growth-Process Models
 7.4.2 Inhomogeneity of Growth
 7.4.3 Growth at High Deposition Rates
 7.4.4 Silane Dissociation Efficiency and Depletion Criteria for nc-Si Deposition
 7.4.5 Low-Temperature (LT) Deposition
 7.4.6 Structural Evolution at Low Temperature
 7.4.7 Transient Plasma

7.5 Upscaling to Large-Area and Industrial Processing: Critical Analysis of Various Fabrication Processes

Acknowledgements
References
8. Modeling of Thin-Film Deposition Processes

Carlo Cavallotti

8.1 Introduction 287
8.2 Modeling the Plasma Discharge 290
8.3 Modeling of the Gas Phase and Surface Kinetics 295
 8.3.1 Gas-Phase Kinetic Scheme 297
 8.3.2 Surface Kinetic Scheme 301
 8.3.3 On the Consistent Solution of the Plasma Discharge and Kinetic Models: Theory and Examples 303
8.4 Modeling of the Thin-Film Morphological Evolution 303
8.5 Status of the Field and Perspectives 308
References 309

9. Thin-Film Silicon Solar Cells

J.K. Rath

9.1 Introduction 311
9.2 Second-Generation Solar Cells: Advantages Compared to the First Generation 312
9.3 Drift-Type Thin-Film Silicon Solar Cells: Substrates and Configuration 314
9.4 Material Considerations for Thin-Film Silicon Solar Cells 316
 9.4.1 Amorphous Silicon 316
 9.4.2 Amorphous Silicon-Germanium 317
 9.4.3 Nanocrystalline Silicon 317
 9.4.4 Light Confinement 318
9.5 Present Status of Drift-Type Thin-Film Silicon Solar Cells 321
 9.5.1 Recent R&D Results on Thin-Film Silicon Solar Cells 322
 9.5.2 Industrial Scenario 322
9.6 Technological Issues 325
 9.6.1 High Deposition Rate 325
 9.6.2 Thin Cells 325
9.7 Third-Generation Thin-Film Silicon Cell 329
9.8 Solar Cells on Plastics 331
 9.8.1 Transfer Method 331
 9.8.2 Direct Deposition 332
9.9 Hybrid Cells 334
9.10 Industrial Scenario of Thin-Film Silicon-based Solar Cells 336
9.11 Challenges for Thin-Film Silicon Solar-Module Fabrication 338
Acknowledgements 341
References 341

10. Innovative Quantum Effects in Silicon for Photovoltaic Applications

Zhizhong Yuan, Aleksei Anopchenko and Lorenzo Pavesi

10.1 Basic Principles of 3rd-Generation Solar Cells 355
 10.1.1 The Need for a New Generation of Solar Cells 355
Contents

10.1.2 Limitations in Early Generations 356
10.1.3 3rd-Generation Options 357

10.2 The Advantages of Using Silicon Nanocrystals 359
10.2.1 Fabrication and Advantages of Si-NCs 359
10.2.2 Quantum Confinement Effect in Si-NCs 360

10.3 Applications of Si-NCs in the 3rd-Generation Solar Cells 362
10.3.1 All-Silicon Tandem Solar Cells 362
10.3.2 Hot-Carrier Solar Cells 364
10.3.3 Intermediate-Band Solar Cells 366
10.3.4 Multiple-Carrier Generation 369
10.3.5 Downshifter Cell 372

10.4 Challenges and Solutions 375
10.4.1 Size Control 375
10.4.2 Carrier Transport 375
10.4.3 Absorption 378
10.4.4 Technological Constraints 381

10.5 Conclusions 381
Acknowledgements 381
References 381

Index 393