CONTENTS

Preface and Acknowledgments xxii

1 INTRODUCTION 1
 1.1 Overview of Transmission Planning 1
 1.1.1 Basic Tasks in Transmission Planning 1
 1.1.2 Traditional Planning Criteria 3
 1.2 Necessity of Probabilistic Transmission Planning 6
 1.3 Outline of the Book 8

2 BASIC CONCEPTS OF PROBABILISTIC PLANNING 11
 2.1 Introduction 11
 2.2 Probabilistic Planning Criteria 12
 2.2.1 Probabilistic Cost Criteria 12
 2.2.2 Specified Reliability Index Target 13
 2.2.3 Relative Comparison 13
 2.2.4 Incremental Reliability Index 13
 2.3 Procedure of Probabilistic Planning 14
 2.3.1 Probabilistic Reliability Evaluation 14
 2.3.2 Probabilistic Economic Analysis 17
 2.4 Other Aspects in Probabilistic Planning 17
 2.5 Conclusions 18

3 LOAD MODELING 21
 3.1 Introduction 21
 3.2 Load Forecast 22
 3.2.1 Multivariate Linear Regression 22
 3.2.1.1 Regression Equation 22
 3.2.1.2 Statistical Test of Regression Model 23
 3.2.1.3 Regression Forecast 25
<table>
<thead>
<tr>
<th>Section</th>
<th>Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>3.2.2</td>
<td>Nonlinear Regression</td>
<td>26</td>
</tr>
<tr>
<td>3.2.2.1</td>
<td>Nonlinear Regression Models</td>
<td>26</td>
</tr>
<tr>
<td>3.2.2.2</td>
<td>Parameter Estimation of Models</td>
<td>27</td>
</tr>
<tr>
<td>3.2.3</td>
<td>Probabilistic Time Series</td>
<td>28</td>
</tr>
<tr>
<td>3.2.3.1</td>
<td>Conversion to a Stationary Time Series</td>
<td>29</td>
</tr>
<tr>
<td>3.2.3.2</td>
<td>Model Identification</td>
<td>30</td>
</tr>
<tr>
<td>3.2.3.3</td>
<td>Estimating Coefficients of Models</td>
<td>31</td>
</tr>
<tr>
<td>3.2.3.4</td>
<td>Load Forecast Equation</td>
<td>32</td>
</tr>
<tr>
<td>3.2.3.5</td>
<td>A Posteriori Test of Load Forecast Accuracy</td>
<td>33</td>
</tr>
<tr>
<td>3.2.4</td>
<td>Neural Network Forecast</td>
<td>34</td>
</tr>
<tr>
<td>3.2.4.1</td>
<td>Feedforward Backpropagation Neural Network (FFBPNN)</td>
<td>34</td>
</tr>
<tr>
<td>3.2.4.2</td>
<td>Learning Process of FFBPNN</td>
<td>36</td>
</tr>
<tr>
<td>3.2.4.3</td>
<td>Load Prediction</td>
<td>37</td>
</tr>
<tr>
<td>3.3</td>
<td>Load Clustering</td>
<td>37</td>
</tr>
<tr>
<td>3.3.1</td>
<td>Multistep Load Model</td>
<td>37</td>
</tr>
<tr>
<td>3.3.2</td>
<td>Load Curve Grouping</td>
<td>40</td>
</tr>
<tr>
<td>3.4</td>
<td>Uncertainty and Correlation of Bus Loads</td>
<td>42</td>
</tr>
<tr>
<td>3.5</td>
<td>Voltage- and Frequency-Dependent Bus Loads</td>
<td>44</td>
</tr>
<tr>
<td>3.5.1</td>
<td>Bus Load Model for Static Analysis</td>
<td>45</td>
</tr>
<tr>
<td>3.5.1.1</td>
<td>Polynomial Bus Load Model</td>
<td>45</td>
</tr>
<tr>
<td>3.5.1.2</td>
<td>Exponential Bus Load Model</td>
<td>45</td>
</tr>
<tr>
<td>3.5.2</td>
<td>Bus Load Model for Dynamic Analysis</td>
<td>46</td>
</tr>
<tr>
<td>3.6</td>
<td>Conclusions</td>
<td>46</td>
</tr>
</tbody>
</table>

4 SYSTEM ANALYSIS TECHNIQUES

4.1 Introduction | 49
4.2 Power Flow | 50
4.2.1 Newton–Raphson Method	50
4.2.2 Fast Decoupled Method	51
4.2.3 DC Power Flow	52
4.3 Probabilistic Power Flow	53
4.3.1 Point Estimation Method	54
4.3.2 Monte Carlo Method	55
4.4 Optimal Power Flow (OPF)	57
4.4.1 OPF Model	58
4.4.2 Interior Point Method (IPM)	60
4.4.2.1 Optimality and Feasibility Conditions	60
4.4.2.2 Procedure of IPM	62
4.5 Probabilistic Search Optimization Algorithms 64
 4.5.1 Genetic Algorithm (GA) 64
 4.5.1.1 Fitness Function 65
 4.5.1.2 Selection 65
 4.5.1.3 Recombination 66
 4.5.1.4 Mutation 67
 4.5.1.5 Reinsertion 67
 4.5.1.6 Procedure of Genetic Algorithm 68
 4.5.2 Particle Swarm Optimization (PSO) 69
 4.5.2.1 Inertia Weight Approach 70
 4.5.2.2 Constriction Factor Approach 70
 4.5.2.3 Procedure of PSO 71

4.6 Contingency Analysis and Ranking 72
 4.6.1 Contingency Analysis Methods 72
 4.6.1.1 AC Power-Flow-Based Method 72
 4.6.1.2 DC Power-Flow-Based Method 73
 4.6.2 Contingency Ranking 75
 4.6.2.1 Ranking Based on Performance Index 75
 4.6.2.2 Ranking Based on Probabilistic Risk Index 75

4.7 Voltage Stability Evaluation 76
 4.7.1 Continuation Power Flow Technique 76
 4.7.1.1 Prediction Step 77
 4.7.1.2 Correction Step 78
 4.7.1.3 Identification of Voltage Collapse Point 78
 4.7.2 Reduced Jacobian Matrix Analysis 78

4.8 Transient Stability Solution 80
 4.8.1 Transient Stability Equations 80
 4.8.2 Simultaneous Solution Technique 81
 4.8.3 Alternate Solution Technique 82

4.9 Conclusions 83

5 PROBABILISTIC RELIABILITY EVALUATION 85
 5.1 Introduction 85
 5.2 Reliability Indices 86
 5.2.1 Adequacy Indices 86
 5.2.2 Reliability Worth Indices 88
 5.2.3 Security Indices 89
5.3 Reliability Worth Assessment
 5.3.1 Methods of Estimating Unit Interruption Cost 90
 5.3.2 Customer Damage Functions (CDFs) 91
 5.3.2.1 Customer Survey Approach 91
 5.3.2.2 Establishment of CDF 91
 5.3.3 Application of Reliability Worth Assessment 92

5.4 Substation Adequacy Evaluation 93
 5.4.1 Outage Modes of Components 94
 5.4.2 State Enumeration Technique 95
 5.4.3 Labeled Bus Set Approach 96
 5.4.4 Procedure of Adequacy Evaluation 97

5.5 Composite System Adequacy Evaluation 99
 5.5.1 Probabilistic Load Models 100
 5.5.1.1 Load Curve Models 100
 5.5.1.2 Load Uncertainty Model 100
 5.5.1.3 Load Correlation Model 101
 5.5.2 Component Outage Models 101
 5.5.2.1 Basic Two-State Model 101
 5.5.2.2 Multistate Model 101
 5.5.3 Selection of System Outage States 102
 5.5.3.1 Nonsequential Sampling 102
 5.5.3.2 Sequential Sampling 103
 5.5.4 System Analysis 103
 5.5.5 Minimum Load Curtailment Model 104
 5.5.6 Procedure of Adequacy Evaluation 105

5.6 Probabilistic Voltage Stability Assessment 107
 5.6.1 Optimization Model of Recognizing Power Flow Insolvability 108
 5.6.2 Method for Identifying Voltage Instability 110
 5.6.3 Determination of Contingency System States 111
 5.6.3.1 Selection of Precontingency System States 111
 5.6.3.2 Selection of Contingencies 112
 5.6.4 Assessing Average Voltage Instability Risk 113

5.7 Probabilistic Transient Stability Assessment 114
 5.7.1 Selection of Prefault System States 114
 5.7.2 Fault Probability Models 115
 5.7.2.1 Probability of Fault Occurrence 115
 5.7.2.2 Probability of Fault Location 115
 5.7.2.3 Probability of Fault Type 115
5.7.2.4 Probability of Unsuccessful Automatic Reclosure 116
5.7.2.5 Probability of Fault Clearing Time 116
5.7.3 Selection of Fault Events 117
5.7.4 Transient Stability Simulation 117
5.7.5 Assessing Average Transient Instability Risk 118
5.8 Conclusions 120

6 ECONOMIC ANALYSIS METHODS 123
6.1 Introduction 123
6.2 Cost Components of Projects 124
 6.2.1 Capital Investment Cost 124
 6.2.2 Operation Cost 124
 6.2.3 Unreliability Cost 125
6.3 Time Value of Money and Present Value Method 125
 6.3.1 Discount Rate 125
 6.3.2 Conversion between Present and Future Values 126
 6.3.3 Cash Flow and Its Present Value 127
 6.3.4 Formulas for a Cash Flow with Equal Annual Values 128
 6.3.4.1 Present Value Factor 129
 6.3.4.2 End Value Factor 129
 6.3.4.3 Capital Return Factor 129
 6.3.4.4 Sinking Fund Factor 130
 6.3.4.5 Relationships between the Factors 130
6.4 Depreciation 131
 6.4.1 Concept of Depreciation 131
 6.4.2 Straight-Line Method 132
 6.4.3 Accelerating Methods 133
 6.4.3.1 Declining Balance Method 133
 6.4.3.2 Total Year Number Method 134
 6.4.4 Annuity Method 135
 6.4.5 Numerical Example of Depreciation 135
6.5 Economic Assessment of Investment Projects 137
 6.5.1 Total Cost Method 137
 6.5.2 Benefit/Cost Analysis 139
 6.5.2.1 Net Benefit Present Value Method 139
 6.5.2.2 Benefit/Cost Ratio Method 139
 6.5.3 Internal Rate of Return Method 140
 6.5.4 Length of Cash Flows 141
6.6 Economic Assessment of Equipment Replacement 142
 6.6.1 Replacement Delay Analysis 142
 6.6.2 Estimating Economic Life 143
6.7 Uncertainty Analysis in Economic Assessment 144
 6.7.1 Sensitivity Analysis 145
 6.7.2 Probabilistic Analysis 145
6.8 Conclusions 147

7 DATA IN PROBABILISTIC TRANSMISSION PLANNING 149
 7.1 Introduction 149
 7.2 Data for Power System Analysis 150
 7.2.1 Equipment Parameters 150
 7.2.1.1 Parameters of Overhead Line 150
 7.2.1.2 Parameters of Cable 152
 7.2.1.3 Parameters of Transformer 153
 7.2.1.4 Parameters of Synchronous Generator 155
 7.2.1.5 Parameters of Other Equipment 155
 7.2.2 Equipment Ratings 155
 7.2.2.1 Current Carrying Capacity of Overhead Line 157
 7.2.2.2 Current Carrying Capacity of Cable 158
 7.2.2.3 Loading Capacity of Transformer 159
 7.2.3 System Operation Limits 161
 7.2.4 Bus Load Coincidence Factors 161
 7.3 Reliability Data in Probabilistic Planning 163
 7.3.1 General Concepts of Reliability Data 163
 7.3.2 Equipment Outage Indices 164
 7.3.2.1 Outage Duration (OD) 165
 7.3.2.2 Outage Frequency (OF) 166
 7.3.2.3 Unavailability (U) 167
 7.3.2.4 Calculating Equipment Outage Indices 167
 7.3.2.5 Examples of Equipment Outage Indices 169
 7.3.3 Delivery Point Indices 171
 7.3.3.1 Definitions of Delivery Point Indices 172
 7.3.3.2 Examples of Delivery Point Indices 175
 7.4 Other Data 176
 7.4.1 Data of Generation Sources 176
 7.4.2 Data for Interconnections 177
 7.4.3 Data for Economic Analysis 177
 7.5 Conclusions 178
8 FUZZY TECHNIQUES FOR DATA UNCERTAINTY

8.1 Introduction 181
8.2 Fuzzy Models of System Component Outages 182
 8.2.1 Basic Fuzzy Models 183
 8.2.1.1 Fuzzy Model for Repair Time 183
 8.2.1.2 Fuzzy Model for Outage Rate 185
 8.2.1.3 Fuzzy Model for Unavailability 186
 8.2.2 Weather-Related Fuzzy Models 186
 8.2.2.1 Exposure to One Weather Condition 186
 8.2.2.2 Exposure to Two Weather Conditions 187
 8.2.2.3 Exposure to Multiple Weather Conditions 188
 8.3 Mixed Fuzzy and Probabilistic Models for Loads 190
 8.3.1 Fuzzy Model for Peak Load 190
 8.3.2 Probabilistic Model for Load Curve 190
 8.4 Combined Probabilistic and Fuzzy Techniques 192
 8.4.1 Probabilistic Representation for Region-Divided Weather States 192
 8.4.2 Hybrid Reliability Assessment Method 193
 8.4.2.1 Evaluating Membership Functions of Reliability Indices 193
 8.4.2.2 Defuzzification of Membership Functions 196
 8.5 Example 1: Case Study Not Considering Weather Effects 196
 8.5.1 Case Description 196
 8.5.2 Membership Functions of Reliability Indices 198
 8.6 Example 2: Case Study Considering Weather Effects 202
 8.6.1 Case Description 202
 8.6.2 Membership Functions of Reliability Indices 204
 8.6.3 Comparisons between Fuzzy and Traditional Models 211
 8.7 Conclusions 212

9 NETWORK REINFORCEMENT PLANNING

9.1 Introduction 215
9.2 Probabilistic Planning of Bulk Power Supply System 216
 9.2.1 Description of Problem 216
 9.2.2 Economic Comparison between Two Options 217
 9.2.3 Reliability Evaluation Method 217
 9.2.4 Reliability Comparison between Two Options 219
 9.2.4.1 Data Preparation 219
 9.2.4.2 EENS (Expected Energy Not Supplied) Indices 220
9.2.5 Effect of the Existing HVDC Subsystem 221
 9.2.5.1 Comparison between Cases with and without the Existing HVDC 221
 9.2.5.2 Effect of Replacing a Reactor of the Existing HVDC 222
 9.2.5.3 Comparison between the 230-kV AC Line and Existing HVDC 223

9.2.6 Summary 224

9.3 Probabilistic Planning of Transmission Loop Network 225
 9.3.1 Description of Problem 225
 9.3.2 Planning Options 225
 9.3.3 Planning Method 227
 9.3.3.1 Basic Procedure 227
 9.3.3.2 Evaluating Unreliability Cost 227
 9.3.3.3 Evaluating Energy Loss Cost 228
 9.3.3.4 Evaluating Annual Investment Cost 229
 9.3.3.5 Calculating Present Values of Costs 229
 9.3.4 Study Results 229
 9.3.4.1 Unreliability Costs 229
 9.3.4.2 Energy Loss Costs 230
 9.3.4.3 Cash Flows of Annual Investments 231
 9.3.4.4 Benefit/Cost Analysis 232
 9.3.5 Summary 234

9.4 Conclusions 234

10 RETIREMENT PLANNING OF NETWORK COMPONENTS 237
 10.1 Introduction 237
 10.2 Retirement Timing of an Aged AC Cable 238
 10.2.1 Description of Problem 239
 10.2.2 Methodology in Retirement Planning 239
 10.2.2.1 Basic Procedure 239
 10.2.2.2 Evaluating Parameters in the Weibull Model 240
 10.2.2.3 Evaluating Unavailability of System Components 241
 10.2.2.4 Evaluating Expected Damage Cost Caused by End-of-Life Failure 241
 10.2.3 Application to Retirement of the Aged AC Cable 244
 10.2.3.1 α and β in the Weibull Model 244
10.2.3.2 Unavailability Due to End-of-Life Failure 244
10.2.3.3 Expected Damage Costs 245
10.2.3.4 Economic Comparison 246
10.2.4 Summary 247
10.3 Replacement Strategy of an HVDC Cable 247
10.3.1 Description of Problem 247
10.3.2 Methodology in Replacement Strategy 249
10.3.2.1 Basic Procedure 249
10.3.2.2 Evaluating Capacity State Probability of HVDC Subsystem 250
10.3.2.3 Evaluating Reliability of Overall System 250
10.3.2.4 Benefit/Cost Analysis of Replacement Strategies 251
10.3.3 Application to Replacement of the Damaged HVDC Cable 251
10.3.3.1 Study Conditions 251
10.3.3.2 Capacity Probability Distributions of HVDC Subsystem 252
10.3.3.3 EENS Indices of Supply System 254
10.3.3.4 Strategy Analysis of Three Replacement Options 255
10.3.4 Summary 257
10.4 Conclusions 257

11 SUBSTATION PLANNING 259
11.1 Introduction 259
11.2 Probabilistic Planning of Substation Configuration 260
11.2.1 Description of Problem 260
11.2.2 Planning Method 261
11.2.2.1 Simplified Minimum Cutset Technique for Reliability Evaluation 261
11.2.2.2 Economic Analysis Approach 265
11.2.3 Comparison between the Two Configurations 266
11.2.3.1 Study Conditions and Data 266
11.2.3.2 Reliability Results 267
11.2.3.3 Economic Comparison 270
11.2.3.4 Other Considerations 271
11.2.4 Summary 272
11.3 Transformer Spare Planning 272
APPENDIX A ELEMENTS OF PROBABILITY THEORY AND STATISTICS 309
A.1 Probability Operation Rules 309
 A.1.1 Intersection 309
 A.1.2 Union 310
 A.1.3 Conditional Probability 310
A.2 Four Important Probability Distributions 310
 A.2.1 Binomial Distribution 310
 A.2.2 Exponential Distribution 311
 A.2.3 Normal Distribution 311
 A.2.4 Weibull Distribution 312
A.3 Measures of Probability Distribution 313
 A.3.1 Mathematical Expectation 313
 A.3.2 Variance and Standard Deviation 313
 A.3.3 Covariance and Correlation Coefficient 314
A.4 Parameter Estimation 314
 A.4.1 Maximum Likelihood Estimation 314
 A.4.2 Mean, Variance, and Covariance of Samples 315
 A.4.3 Interval Estimation 315
A.5 Monte Carlo Simulation 316
 A.5.1 Basic Concept 316
 A.5.2 Random-Number Generator 317
 A.5.3 Inverse Transform Method 317
 A.5.4 Three Important Random Variates 318
 A.5.4.1 Exponential Distribution Random Variate 318
 A.5.4.2 Normal Distribution Random Variate 318
 A.5.4.3 Weibull Distribution Random Variate 319

APPENDIX B ELEMENTS OF FUZZY MATHEMATICS 321
B.1 Fuzzy Sets 321
 B.1.1 Definition of Fuzzy Set 321
 B.1.2 Operations of Fuzzy Sets 322
B.2 Fuzzy Numbers 323
 B.2.1 Definition of Fuzzy Number 323
B.2.2 Arithmetic Operation Rules of Fuzzy Numbers

<table>
<thead>
<tr>
<th>Rule</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Addition</td>
<td>323</td>
</tr>
<tr>
<td>Subtraction</td>
<td>323</td>
</tr>
<tr>
<td>Multiplication</td>
<td>323</td>
</tr>
<tr>
<td>Division</td>
<td>324</td>
</tr>
<tr>
<td>Maximum and Minimum Operations</td>
<td>324</td>
</tr>
</tbody>
</table>

B.2.3 Functional Operation of Fuzzy Numbers

<table>
<thead>
<tr>
<th>Rule</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two Typical Fuzzy Numbers in Engineering Applications</td>
<td>325</td>
</tr>
<tr>
<td>Triangular Fuzzy Number</td>
<td>325</td>
</tr>
<tr>
<td>Trapezoidal Fuzzy Number</td>
<td>325</td>
</tr>
</tbody>
</table>

B.3 Fuzzy Relations

<table>
<thead>
<tr>
<th>Rule</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Concepts</td>
<td>326</td>
</tr>
<tr>
<td>Reflexivity</td>
<td>327</td>
</tr>
<tr>
<td>Symmetry</td>
<td>327</td>
</tr>
<tr>
<td>Resemblance</td>
<td>327</td>
</tr>
<tr>
<td>Transitivity</td>
<td>327</td>
</tr>
<tr>
<td>Equivalence</td>
<td>327</td>
</tr>
<tr>
<td>Operations of Fuzzy Matrices</td>
<td>327</td>
</tr>
</tbody>
</table>

APPENDIX C ELEMENTS OF RELIABILITY EVALUATION

<table>
<thead>
<tr>
<th>Rule</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Basic Concepts</td>
<td>329</td>
</tr>
<tr>
<td>Reliability Functions</td>
<td>329</td>
</tr>
<tr>
<td>Model of Repairable Component</td>
<td>330</td>
</tr>
<tr>
<td>Crisp Reliability Evaluation</td>
<td>331</td>
</tr>
<tr>
<td>Series and Parallel Networks</td>
<td>331</td>
</tr>
<tr>
<td>Series Network</td>
<td>331</td>
</tr>
<tr>
<td>Parallel Network</td>
<td>332</td>
</tr>
<tr>
<td>Minimum Cutsets</td>
<td>333</td>
</tr>
<tr>
<td>Markov Equations</td>
<td>333</td>
</tr>
<tr>
<td>Fuzzy Reliability Evaluation</td>
<td>335</td>
</tr>
<tr>
<td>Series and Parallel Networks Using Fuzzy Numbers</td>
<td>335</td>
</tr>
<tr>
<td>Minimum Cutset Approach Using Fuzzy Numbers</td>
<td>336</td>
</tr>
</tbody>
</table>
C.3.3 Fuzzy Markov Models
 C.3.3.1 Approach Based on Analytical Expressions 338
 C.3.3.2 Approach Based on Numerical Computations 339

References 341

Index 349