Index

Page numbers in italics refer to figures.

a posteriori segmentation, 156
a priori segmentation, 155
A–not A method, 80, 93
abnormality detection, 99
acceptance data, 9–10, 112, 113, 115, 157–8
additional consumer attributes, 147–9, 163–4
additional sample attributes, 149–52
additive consumer effects, 135
AIC (Akaike’s information criterion), 123, 232
ANCOVA (analysis of covariance), 115
ANOVA (analysis of variance) (see also Brockhoff–Sommer ANOVA model, mixed model ANOVA, multi-way ANOVA, one-way ANOVA, three-way ANOVA, two-way ANOVA), 113–15, 193–4
model diagnostics, 241–4
relationship to regression analysis, 232–3
ASCA (ANOVA simultaneous component analysis), 64–5
assumptions (model diagnostics), 241
auctions, 9
average preferences, 135
base alternatives, 121
Bayesian statistics, 258
beta-binomial models, 89, 90–2
bi-plots, 216–17
BIBDs (balanced incomplete block designs), 189
binomial distribution, 177–8
blind tasting, 6
block experiment designs (blocking), 185, 188–90
box plots, 16, 17, 99, 169, 170
Bradley-Terry-Luce method, 123
Brockhoff assessor model, 52
Brockhoff–Sommer ANOVA model, 52
categorical models, 56
categorical variables, 115, 117, 178, 234–5
CCDs (central composite designs), 187
chaining effects (cluster analysis), 252
chemical methods, 68
chi-square test, 178, 179
choice based methods, 120–3
segmentation, 162–3
choice data, 3
choice sets, 122
choice tests, 9
circular models, 143
classification analysis/clustering, 147, 157–9, 160, 249–51
FCM (fuzzy clustering method), 161–2, 162, 254–6
finite mixture model clustering, 162, 258–9
hierarchical clustering, 251–3
K-means clustering, 254
noise clustering, 257–8
residual distances, 256–7
sequential clustering, 257, 258
simultaneous clustering, 160–3
cluster matrices, 259–60
collinearity problem (regression), 230–1, 237
collinearity problem (regression), 230–1
complete block experiment designs, 189
complete linkage, 252
certainty intervals, 171
conjoint data, 106
consensus matrices, 265
consensuses, 70
consonance analysis, 34–5
consumer data, 219–20
consumer effects, 117

Statistics for Sensory and Consumer Science Tormod Næs, Per B. Brockhoff and Oliver Tomic
© 2010 John Wiley & Sons, Ltd
284 Index

cconsumer loadings, 132, 133–5, 137, 138, 142
cconsumer studies, 1, 2
cconsumer variables, 115
ccontingency tables, 178
ccontinuous models, 56–7
ccontinuous variables, 115, 117–18, 166, 234–5
ccontrol charts, 172
ccontrol limits, 172
correction methods
scaling differences, 40–3
unreliable assessors, 43–4
correlation, 173–5
correlation loadings, 22–3, 61, 134, 137, 138, 217–19
correlation plots, 30–2
covariance, 174
covariance criterion, 238
covariance matrices, 175
cross-validation, 119, 232, 235, 239, 240–1
CVA (canonical variate analysis), 62
data (statistics), 165
data compression methods, 236
data matrices/tables, 210–11
data sets, 97–8, 128
degrees of freedom, 167–8, 194
dendrograms, 252–3
descriptive sensory analysis, 5–6, 67
design factors, 108
design of experiments (see experiment designs)
difference tests (see discrimination tests)
discriminant analysis, 244–5, 246
discrimination tests, 7, 79–6
comparison with similarity tests, 87–9
level 1 analysis, 81–2
level 2 analysis, 82
power analysis, 85–6
Thurstonian approach, 81, 82–5, 86–7
distributions (statistics), 166, 167–9
eggshell plots, 33, 34
elliptic models, 143
empirical validation, 220–1
error variance, 176
estimates, 169
experiment designs, 102–6, 181–91
block designs, 188–90
fractional factorial designs, 103, 104–5, 187–8
full factorial designs, 104, 185–7
nested designs, 190–1
power, 191
product presentation, 105–6, 189–90
split-plot designs, 106, 190
explained variances, 213, 217, 221, 239
extended ANOVA tables, 53
external preference mapping (PREFMAP), 131, 132, 133, 137, 141, 159
external validation, 68, 72–4
F-distribution, 167, 168
F-values, 28, 29, 43
factor analysis (FA), 224–5
factor effects, 98–9, 106–7, 108
FCM (fuzzy clustering method), 161–2, 162, 254–6, 260
filtered data, 44
finite mixture model clustering, 162, 258–9
formal equivalence testing, 88
fractional factorial experiment designs, 103, 104–5, 111, 150, 184, 187–8, 201–3
free choice profiling, 36
Friedman test, 120, 271
Frobenius norm, 265
full factorial experiment designs, 104, 184, 185–7, 188
fuzzy clustering method (FCM), 161–2, 162, 254–6, 260
GCA (generalised canonical analysis), 74, 75, 267–8
gender effects, 113–15
generators, 188
GLMs (generalised linear models), 245–6
GPA (generalised procrustes analysis), 74, 264–5
hierarchical clustering, 251–3
histograms, 16, 17, 99, 166
homogeneity tests, 179–80
hypothesis testing, 169–72, 176–8, 179–80
ideal point preference mapping, 130, 132, 141–3, 144, 162
IIA (independent of irrelevant alternatives) assumption, 122
incomplete block experiment designs, 189
individual assessor matrices, 36
individual effects, 116
individual line plots, 33–4, 55
INDSCAL (individual MDS) method, 271
industrial experiments, 186
interactions, 182, 185–6, 198, 199
internal preference mapping (MDPREF), 131–2, 133, 134
joint ANOVA approach, 108–11
joint modelling, 118
Index

<table>
<thead>
<tr>
<th>K-means clustering, 254, 256</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kruskal-Wallis test, 271</td>
</tr>
<tr>
<td>L-PLS regression, 149, 273</td>
</tr>
<tr>
<td>latent classes, 122</td>
</tr>
<tr>
<td>least squares, 175</td>
</tr>
<tr>
<td>level 0 analysis, 81, 90, 93</td>
</tr>
<tr>
<td>level 1 analysis, 80, 81–2, 90</td>
</tr>
<tr>
<td>level 2 analysis, 80–1, 82, 90</td>
</tr>
<tr>
<td>level 3 analysis (see Thurstonian approach)</td>
</tr>
<tr>
<td>leverage, 222, 223, 242, 244</td>
</tr>
<tr>
<td>line plots, 16–18</td>
</tr>
<tr>
<td>linear combinations (vectors), 213</td>
</tr>
<tr>
<td>linear preference mapping, 129–41, 144</td>
</tr>
<tr>
<td>linear regression (see also multiple regression), 175–7</td>
</tr>
<tr>
<td>loading values, 212</td>
</tr>
<tr>
<td>loadings plots, 216</td>
</tr>
<tr>
<td>logit model, 122, 123</td>
</tr>
<tr>
<td>LS-PLS method, 71, 76</td>
</tr>
<tr>
<td>LSD (least significant differences) lines, 51</td>
</tr>
<tr>
<td>Mahalanobis distance, 251</td>
</tr>
<tr>
<td>Manhattan plots, 24, 25</td>
</tr>
<tr>
<td>Mann Whitney test, 271</td>
</tr>
<tr>
<td>MANOVA (multivariate ANOVA), 59–62</td>
</tr>
<tr>
<td>market share simulation, 123</td>
</tr>
<tr>
<td>maximum likelihood (ML) estimate, 246, 270</td>
</tr>
<tr>
<td>maximum utility model, 123</td>
</tr>
<tr>
<td>MDS (multidimensional scaling), 271</td>
</tr>
<tr>
<td>means (statistics), 168, 169, 170</td>
</tr>
<tr>
<td>medians, 169</td>
</tr>
<tr>
<td>MFA (multiple factor analysis), 268</td>
</tr>
<tr>
<td>missing cells/values, 18–19, 273</td>
</tr>
<tr>
<td>mixed model ANOVA, 18–19, 43, 203–5</td>
</tr>
<tr>
<td>model diagnostics, 241–4</td>
</tr>
<tr>
<td>model validation (see validation)</td>
</tr>
<tr>
<td>MSC (multiplicative signal correction) transforms, 42</td>
</tr>
<tr>
<td>MSE (mean square error) values, 28, 29</td>
</tr>
<tr>
<td>multi-way ANOVA, 56, 57, 200–1</td>
</tr>
<tr>
<td>multinormal distributions, 258</td>
</tr>
<tr>
<td>multinomial regression, 121, 246</td>
</tr>
<tr>
<td>multiple regression, 68, 229–32</td>
</tr>
<tr>
<td>model diagnostics, 241–4</td>
</tr>
<tr>
<td>variable selection, 235</td>
</tr>
<tr>
<td>multivariate analysis, 15, 19</td>
</tr>
<tr>
<td>multivariate sensory data, 58–65</td>
</tr>
<tr>
<td>N-PLS (N-way PLS regression), 269</td>
</tr>
<tr>
<td>naive analysis, 91</td>
</tr>
<tr>
<td>nested experiment designs, 190–1, 205</td>
</tr>
<tr>
<td>NIPALS method, 220</td>
</tr>
<tr>
<td>NIR (near infrared) spectroscopy, 71, 74</td>
</tr>
<tr>
<td>noise clustering, 257–8</td>
</tr>
<tr>
<td>nonparametric methods, 52, 271</td>
</tr>
<tr>
<td>normal distribution 167</td>
</tr>
<tr>
<td>null hypothesis, 171</td>
</tr>
<tr>
<td>one-way ANOVA, 28–9, 56, 99, 102, 194–6, 232</td>
</tr>
<tr>
<td>optimal scaling (OS) method, 120, 272–3</td>
</tr>
<tr>
<td>optimisation (product properties), 72</td>
</tr>
<tr>
<td>order of product presentation, 105, 189–90</td>
</tr>
<tr>
<td>outliers, 16, 169, 221–2, 241, 242, 253</td>
</tr>
<tr>
<td>p-MSE plots, 28, 30</td>
</tr>
<tr>
<td>p-values, 28, 29, 50, 171</td>
</tr>
<tr>
<td>PARAFAC (parallel factor analysis), 74, 75, 76, 266, 271</td>
</tr>
<tr>
<td>parameters (statistics), 169</td>
</tr>
<tr>
<td>parametric models, 272</td>
</tr>
<tr>
<td>path modelling, 269–70</td>
</tr>
<tr>
<td>PC-ANOVA, 62–4, 65</td>
</tr>
<tr>
<td>PCA (principal component analysis), 58–9, 60–1, 115, 209–13</td>
</tr>
<tr>
<td>acceptance data, 112</td>
</tr>
<tr>
<td>relationship to factor analysis, 224–5</td>
</tr>
<tr>
<td>three-way PCA, 265–7</td>
</tr>
<tr>
<td>use of PCA in cluster analysis, 250</td>
</tr>
<tr>
<td>PCR (principal component regression), 69, 70, 71, 73, 133, 236–7</td>
</tr>
<tr>
<td>model diagnostics, 244</td>
</tr>
<tr>
<td>Placket-Burman experiment designs, 188</td>
</tr>
<tr>
<td>PLS (partial least square regression), 69, 70, 71, 76, 133, 237–8, 269</td>
</tr>
<tr>
<td>model diagnostics, 244</td>
</tr>
<tr>
<td>PLS path modelling, 270</td>
</tr>
<tr>
<td>PLS/PCR modelling, 116</td>
</tr>
<tr>
<td>polynomial models, 117, 143, 233–4</td>
</tr>
<tr>
<td>populations (statistics), 165–6</td>
</tr>
<tr>
<td>post hoc testing, 206</td>
</tr>
<tr>
<td>power (experiment designs), 191</td>
</tr>
<tr>
<td>power analysis (discrimination tests), 85–6</td>
</tr>
<tr>
<td>pre-processing, 45</td>
</tr>
<tr>
<td>prediction testing, 221, 238–9</td>
</tr>
<tr>
<td>preference mapping, 68, 128–30</td>
</tr>
<tr>
<td>additional customer attributes, 147–9</td>
</tr>
<tr>
<td>additional sample attributes, 149–52</td>
</tr>
<tr>
<td>ideal point preference mapping, 141–3, 144</td>
</tr>
<tr>
<td>linear preference mapping, 129–41</td>
</tr>
<tr>
<td>sample selection, 146–7</td>
</tr>
<tr>
<td>preliminary analysis, 99–102</td>
</tr>
<tr>
<td>Proc mixed procedure, 205</td>
</tr>
<tr>
<td>Proclustrees method, 259</td>
</tr>
<tr>
<td>procrustes analysis, 35–6</td>
</tr>
<tr>
<td>Procrustes distance, 253, 259, 265</td>
</tr>
</tbody>
</table>
Index

Procrustes rotations, 264
product combinations, 98, 150–2
product development, 135
profile plots, 105–6, 189–90
projection (vectors), 212, 213–14

$q-q$ plots, 202, 242, 243
quadratic polynomial models, 130
profile plots, 32–3

random coefficient models, 52–3, 258
random consumer effects, 135
random errors, 108
randomisation, 185
randomness, 165
rank based studies, 119–20
ranking data, 3, 136, 271–3
ranking tests, 8–9
rating based studies, 8, 123
rating data, 156–63
raw data, 15–18
reduced experiment designs, 107, 109
regression analysis (see also linear regression, multiple regression), 57–8, 68–9, 70, 148, 227–9
regression coefficients, 229–30, 231–2, 236, 246, 272
relative frequencies, 166
relative utility model, 123
REML (restricted maximum likelihood) estimates, 65
repeated measurements, 185
replicates/replication, 53–6, 89–92, 184–5, 198
residual distances, 256–7
residuals, 19, 109, 221, 241–2, 244
resolution III/IV/V experiment designs, 187
RMSEP (root mean square error of variation), 118–19, 239
RV coefficients, 45, 268
sample ranking, 29
sample selection, 146–7
sample spaces, 166, 167
Satterthwaite’s approximation, 205
scaling constants, 41, 42
scaling differences, 24–7, 40–3
scores plots, 214–16
segmentation, 112, 136, 155–64
self-explicated tests, 8, 96
sensory analysis, 219
sensory loadings, 132, 133, 135, 138, 141
sensory panels, 1, 5
sensory profiling (see descriptive sensory analysis)
sensory science, 2
sequential clustering, 257, 258
sequential segmentation, 161
sign test, 271
similarity tests, 87–9
simple linear model, 175
simultaneous clustering, 160–3
single linkage, 252
SPC (statistical process control), 172–3
Spearman rank order correlation, 272
split-plot experiment designs, 190, 205–6
standard deviations, 15–16, 40, 168, 170
standard errors, 169
standardisation (variables), 22, 219, 220
STATIS method, 44–5, 268
statistics, 165–80
contingency tables, 178
correlation, 173–5
distributions, 167–9
hypothesis testing, 169–72, 176–8, 179–80
linear regression, 175–6
SPC (statistical process control), 172–3
Stewart control chart, 172
stochastic variables, 166
structural equation modelling, 269
Student t-distribution, 167, 171
subset regression, 235
supervised classification, 245
SVD (singular value decomposition), 220
Taguchi’s experiment designs, 188
tau-strategy, 86
Thurstonian approach, 81, 82–5, 86–7, 93
three-AFC test, 79, 80, 82, 83, 85, 87, 89
three-factor interactions, 185, 187
three-way analysis, 263–4, 269
three-way ANOVA, 45, 55, 204–5
three-way component methods, 36, 223
three-way PCA, 265–7
trained sensory panels (see sensory panels)
triangle test, 79, 86, 91
two-way ANOVA, 48–52, 196–200, 203–4
Index 287

type I errors, 172

type II errors, 172

type I/II/III tests, 201

unbalanced data, 18

unreliable assessors, 43–4

utilities, 113

VAF (variance accounted for) index, 35

validation, 118, 119, 123, 220–1, 232, 238–41

variable selection, 235

variances, 168, 169

weighted averages, 44

willingness to pay tests, 9