Contents

Preface ix
Acknowledgements xi

1 Introduction 1
1.1 The Distinction between Trained Sensory Panels and Consumer Panels 1
1.2 The Need for Statistics in Experimental Planning and Analysis 2
1.3 Scales and Data Types 3
1.4 Organisation of the Book 3

2 Important Data Collection Techniques for Sensory and Consumer Studies 5
2.1 Sensory Panel Methodologies 5
2.2 Consumer Tests 7

PART I PROBLEM DRIVEN

3 Quality Control of Sensory Profile Data 11
3.1 General Introduction 11
3.2 Visual Inspection of Raw Data 15
3.3 Mixed Model ANOVA for Assessing the Importance of the Sensory Attributes 18
3.4 Overall Assessment of Assessor Differences Using All Variables Simultaneously 19
3.5 Methods for Detecting Differences in Use of the Scale 24
3.6 Comparing the Assessors’ Ability to Detect Differences between the Products 27
3.7 Relations between Individual Assessor Ratings and the Panel Average 29
3.8 Individual Line Plots for Detailed Inspection of Assessors 33
3.9 Miscellaneous Methods 34

4 Correction Methods and Other Remedies for Improving Sensory Profile Data 39
4.1 Introduction 39
4.2 Correcting for Different Use of the Scale 40

COPYRIGHTED MATERIAL
Contents

9.7 Combining Preference Mapping with Additional Information about the Samples 149

10 Segmentation of Consumer Data 155
 10.1 Introduction 155
 10.2 Segmentation of Rating Data 156
 10.3 Relating Segments to Consumer Attributes 163

PART II METHOD ORIENTED

11 Basic Statistics 165
 11.1 Basic Concepts and Principles 165
 11.2 Histogram, Frequency and Probability 166
 11.3 Some Basic Properties of a Distribution (Mean, Variance and Standard Deviation) 168
 11.4 Hypothesis Testing and Confidence Intervals for the Mean \(\mu \) 169
 11.5 Statistical Process Control 172
 11.6 Relationships between Two or More Variables 173
 11.7 Simple Linear Regression 175
 11.8 Binomial Distribution and Tests 177
 11.9 Contingency Tables and Homogeneity Testing 178

12 Design of Experiments for Sensory and Consumer Data 181
 12.1 Introduction 181
 12.2 Important Concepts and Distinctions 182
 12.3 Full Factorial Designs 185
 12.4 Fractional Factorial Designs: Screening Designs 187
 12.5 Randomised Blocks and Incomplete Block Designs 188
 12.6 Split-Plot and Nested Designs 190
 12.7 Power of Experiments 191

13 ANOVA for Sensory and Consumer Data 193
 13.1 Introduction 193
 13.2 One-Way ANOVA 194
 13.3 Single Replicate Two-Way ANOVA 196
 13.4 Two-Way ANOVA with Randomised Replications 198
 13.5 Multi-Way ANOVA 200
 13.6 ANOVA for Fractional Factorial Designs 201
 13.7 Fixed and Random Effects in ANOVA: Mixed Models 203
 13.8 Nested and Split-Plot Models 205
 13.9 Post Hoc Testing 206

14 Principal Component Analysis 209
 14.1 Interpretation of Complex Data Sets by PCA 209
 14.2 Data Structures for the PCA 210
 14.3 PCA: Description of the Method 211
Contents

14.4 Projections and Linear Combinations 213
14.5 The Scores and Loadings Plots 214
14.6 Correlation Loadings Plot 217
14.7 Standardisation 219
14.8 Calculations and Missing Values 220
14.9 Validation 220
14.10 Outlier Diagnostics 221
14.11 Tucker-1 223
14.12 The Relation between PCA and Factor Analysis (FA) 224

15 Multiple Regression, Principal Components Regression and Partial Least Squares Regression 227
15.1 Introduction 227
15.2 Multivariate Linear Regression 229
15.3 The Relation between ANOVA and Regression Analysis 232
15.4 Linear Regression Used for Estimating Polynomial Models 233
15.5 Combining Continuous and Categorical Variables 234
15.6 Variable Selection for Multiple Linear Regression 235
15.7 Principal Components Regression (PCR) 236
15.8 Partial Least Squares (PLS) Regression 237
15.9 Model Validation: Prediction Performance 238
15.10 Model Diagnostics and Outlier Detection 241
15.11 Discriminant Analysis 244
15.12 Generalised Linear Models, Logistic Regression and Multinomial Regression 245

16 Cluster Analysis: Unsupervised Classification 249
16.1 Introduction 249
16.2 Hierarchical Clustering 251
16.3 Partitioning Methods 254
16.4 Cluster Analysis for Matrices 259

17 Miscellaneous Methodologies 263
17.1 Three-Way Analysis of Sensory Data 263
17.2 Relating Three-Way Data to Two-Way Data 269
17.3 Path Modelling 269
17.4 MDS-Multidimensional Scaling 271
17.5 Analysing Rank Data 271
17.6 The L-PLS Method 273
17.7 Missing Value Estimation 273

Nomenclature, Symbols and Abbreviations 277
Index 283