Contents

Preface XV

1 Overview of Nuclear Reactor Systems and Fundamentals 1
 1.1 Introduction 1
 1.2 Types of Nuclear Energy 2
 1.2.1 Nuclear Fission Energy 2
 1.2.2 Nuclear Fusion Energy 2
 1.2.3 Radioisotopic Energy 3
 1.3 Neutron Classification 3
 1.4 Neutron Sources 3
 1.5 Interactions of Neutrons with Matter 3
 1.5.1 Fission Chain Reaction 5
 1.6 Definition of Neutron Flux and Fluence 6
 1.7 Neutron Cross Section 7
 1.7.1 Reactor Flux Spectrum 10
 1.8 Types of Reactors 11
 1.8.1 A Simple Reactor Design 11
 1.8.2 Examples of Nuclear Reactors 12
 1.8.2.1 Generation-I Reactors 13
 1.8.2.2 Generation-II Reactors 15
 1.8.2.3 Generation-III and III+ Reactors 22
 1.8.2.4 Generation-IV Reactors 25
 1.9 Materials Selection Criteria 28
 1.9.1 General Considerations 31
 1.9.1.1 General Mechanical Properties 31
 1.9.1.2 Fabricability 32
 1.9.1.3 Dimensional Stability 32
 1.9.1.4 Corrosion Resistance 32
 1.9.1.5 Design 32
 1.9.1.6 Heat Transfer Properties 32
 1.9.1.7 Availability and Cost 33
 1.9.2 Special Considerations 33
 1.9.2.1 Neutronic Properties 33
Contents

1.9.2.2 Susceptibility to Induced Radioactivity 33
1.9.2.3 Radiation Stability 35
1.9.3 Application of Materials Selection Criteria to Reactor Components 35
1.9.3.1 Structural/Fuel Cladding Materials 36
1.9.3.2 Moderators and Reflectors 36
1.9.3.3 Control Materials 36
1.9.3.4 Coolants 36
1.9.3.5 Shielding Materials 37
1.10 Summary 37

Appendix 1.A 37
Additional Reading Materials 40

2 Fundamental Nature of Materials 43
2.1 Crystal Structure 43
2.1.1 Unit Cell 45
2.1.2 Crystal Structures in Metals 47
2.1.2.1 Body-Centered Cubic (BCC) Crystal Structure 47
2.1.2.2 Face-Centered Cubic (FCC) Crystal Structure 49
2.1.2.3 Hexagonal Close-Packed (HCP) Crystal Structure 49
2.1.3 Close Packing Geometry 52
2.1.4 Polymorphism 53
2.1.5 Miller Indices for Denoting Crystallographic Planes and Directions 54
2.1.5.1 Miller–Bravais Indices for Hexagonal Close-Packed Crystals 57
2.1.6 Interstitial Sites in Common Crystal Structures 59
2.1.7 Crystal Structure of Carbon: Diamond and Graphite 60
2.1.8 Crystal Structure in Ceramics 62
2.1.8.1 Rock Salt Structure 63
2.1.8.2 CsCl Structure 64
2.1.8.3 Fluorite Structure 65
2.1.8.4 Zincblende Structure 66
2.1.8.5 Corundum Structure 66
2.1.9 Summary 69
2.2 Crystal Defects 69
2.2.1 Point Defects 70
2.2.1.1 Point Defects in Metals/Alloys 70
2.2.1.2 Point Defects in Ionic Crystals 77
2.2.2 Line Defects 79
2.2.3 Surface Defects 84
2.2.3.1 Grain Boundaries 84
2.2.3.2 Twin Boundaries 86
2.2.3.3 Stacking Faults 87
2.2.3.4 Other Boundaries 88
2.2.4 Volume Defects 88
2.2.5 Summary 88
2.3 Diffusion 89
2.3.1 Phenomenological Theories of Diffusion 90
 2.3.1.1 Fick’s First Law 90
 2.3.1.2 Fick’s Second Law 91
2.3.2 Atomic Theories of Diffusion 95
2.3.3 Atomic Diffusion Mechanisms 97
2.3.4 Diffusion as a Thermally Activated Process 101
2.3.5 Diffusion in Multicomponent Systems 105
2.3.6 Diffusion in Different Microstructural Paths 106
2.3.6.1 Grain Boundary Diffusion 106
2.3.6.2 Dislocation Core Diffusion 108
2.3.6.3 Surface Diffusion 108
2.3.7 Summary 108
Bibliography 110

3 Fundamentals of Radiation Damage 111
 3.1 Displacement Threshold 114
 3.2 Radiation Damage Models 118
3.3 Summary 125
Bibliography and Suggestions for Further Reading 126
Additional Reading 126

4 Dislocation Theory 127
 4.1 Deformation by Slip in Single Crystals 127
 4.1.1 Critical Resolved Shear Stress 130
 4.1.2 Peierls–Nabarro (P–N) Stress 133
 4.1.3 Slip in Crystals: Accumulation of Plastic Strain 134
 4.1.4 Determination of Burgers Vector Magnitude 136
 4.1.5 Dislocation Velocity 137
 4.2 Other Dislocation Characteristics 140
 4.2.1 Types of Dislocation Loops 140
 4.2.1.1 Glide Loop 141
 4.2.1.2 Prismatic Loop 141
 4.2.2 Stress Field of Dislocations 142
 4.2.2.1 Screw Dislocation 142
 4.2.2.2 Edge Dislocation 143
 4.2.3 Strain Energy of a Dislocation 144
 4.2.3.1 Frank’s Rule 145
 4.2.4 Force on a Dislocation 147
 4.2.5 Forces between Dislocations 151
 4.2.6 Intersection of Dislocations 154
 4.2.7 Origin and Multiplication of Dislocations 157
 4.2.7.1 Consequences of Dislocation Pileups 158
 4.3 Dislocations in Different Crystal Structures 160
 4.3.1 Dislocation Reactions in FCC Lattices 160
 4.3.1.1 Shockley Partials 160
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>5.1.7.2 Miners Rule</td>
<td>234</td>
</tr>
<tr>
<td>5.1.7.3 Crack Growth</td>
<td>234</td>
</tr>
<tr>
<td>5.1.7.4 Paris Law</td>
<td>235</td>
</tr>
<tr>
<td>5.1.7.5 Factors Affecting Fatigue Life</td>
<td>238</td>
</tr>
<tr>
<td>5.1.7.6 Protection Methods against Fatigue</td>
<td>238</td>
</tr>
<tr>
<td>5.1.8 Creep–Fatigue Interaction</td>
<td>239</td>
</tr>
<tr>
<td>5.2 Thermophysical Properties</td>
<td>240</td>
</tr>
<tr>
<td>5.2.1 Specific Heat</td>
<td>240</td>
</tr>
<tr>
<td>5.2.2 Thermal Expansion</td>
<td>244</td>
</tr>
<tr>
<td>5.2.3 Thermal Conductivity</td>
<td>246</td>
</tr>
<tr>
<td>5.2.4 Summary</td>
<td>249</td>
</tr>
<tr>
<td>5.3 Corrosion</td>
<td>249</td>
</tr>
<tr>
<td>5.3.1 Corrosion Basics</td>
<td>249</td>
</tr>
<tr>
<td>5.3.2 Types of Corrosion Couples</td>
<td>253</td>
</tr>
<tr>
<td>5.3.2.1 Composition Cells</td>
<td>253</td>
</tr>
<tr>
<td>5.3.2.2 Concentration Cells</td>
<td>253</td>
</tr>
<tr>
<td>5.3.2.3 Stress Cells</td>
<td>254</td>
</tr>
<tr>
<td>5.3.3 Summary</td>
<td>259</td>
</tr>
<tr>
<td>Appendix 5.A</td>
<td>260</td>
</tr>
<tr>
<td>Appendix 5.B</td>
<td>260</td>
</tr>
<tr>
<td>Bibliography and Suggestions for Further Reading</td>
<td>265</td>
</tr>
<tr>
<td>Additional Reading</td>
<td>266</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 Radiation Effects on Materials</td>
<td>267</td>
</tr>
<tr>
<td>6.1 Microstructural Changes</td>
<td>267</td>
</tr>
<tr>
<td>6.1.1 Cluster Formation</td>
<td>271</td>
</tr>
<tr>
<td>6.1.2 Extended Defects</td>
<td>274</td>
</tr>
<tr>
<td>6.1.2.1 Nucleation and Growth of Dislocation Loops</td>
<td>275</td>
</tr>
<tr>
<td>6.1.2.2 Void/Bubble Formation and Consequent Effects</td>
<td>275</td>
</tr>
<tr>
<td>6.1.3 Radiation-Induced Segregation</td>
<td>286</td>
</tr>
<tr>
<td>6.1.4 Radiation-Induced Precipitation or Dissolution</td>
<td>287</td>
</tr>
<tr>
<td>6.2 Mechanical Properties</td>
<td>287</td>
</tr>
<tr>
<td>6.2.1 Radiation Hardening</td>
<td>287</td>
</tr>
<tr>
<td>6.2.1.1 Saturation Radiation Hardening</td>
<td>292</td>
</tr>
<tr>
<td>6.2.1.2 Radiation Anneal Hardening (RAH)</td>
<td>293</td>
</tr>
<tr>
<td>6.2.1.3 Channeling: Plastic Instability</td>
<td>294</td>
</tr>
<tr>
<td>6.2.2 Radiation Embrittlement</td>
<td>295</td>
</tr>
<tr>
<td>6.2.2.1 Effect of Composition and Fluence</td>
<td>297</td>
</tr>
<tr>
<td>6.2.2.2 Effect of Irradiation Temperature</td>
<td>297</td>
</tr>
<tr>
<td>6.2.2.3 Effect of Thermal Annealing</td>
<td>299</td>
</tr>
<tr>
<td>6.2.3 Helium Embrittlement</td>
<td>300</td>
</tr>
<tr>
<td>6.2.4 Irradiation Creep</td>
<td>302</td>
</tr>
<tr>
<td>6.2.5 Radiation Effect on Fatigue Properties</td>
<td>305</td>
</tr>
<tr>
<td>6.3 Radiation Effects on Physical Properties</td>
<td>306</td>
</tr>
<tr>
<td>6.3.1 Density</td>
<td>307</td>
</tr>
</tbody>
</table>
6.3.2 Elastic Constants 307
6.3.3 Thermal Conductivity 307
6.3.4 Thermal Expansion Coefficient 308
6.4 Radiation Effects on Corrosion Properties 308
6.4.1 Metal/Alloy 308
6.4.2 Protective Layer 308
6.4.3 Corrodent 309
6.4.3.1 LWR Environment 309
6.4.3.2 Liquid Metal Embrittlement 313
6.4.4 Irradiation-Assisted Stress Corrosion Cracking (IASCC) 313
6.5 Summary 314

Bibliography 316

7 Nuclear Fuels 319
7.1 Introduction 319
7.2 Metallic Fuels 321
7.2.1 Metallic Uranium 321
7.2.1.1 Extraction of Uranium 322
7.2.1.2 Nuclear Properties 323
7.2.1.3 Uranium Crystal Structure and Physical Properties 324
7.2.1.4 Mechanical Properties 326
7.2.1.5 Corrosion Properties 327
7.2.1.6 Alloying of Uranium 328
7.2.1.7 Fabrication of Uranium 330
7.2.1.8 Thermal Cycling Growth in Uranium 330
7.2.1.9 Irradiation Properties of Metallic Uranium 331
7.2.2 Metallic Plutonium 335
7.2.2.1 Crystal Structure and Physical Properties of Plutonium 336
7.2.2.2 Fabrication of Plutonium 338
7.2.2.3 Mechanical Properties of Plutonium 338
7.2.2.4 Corrosion Properties 339
7.2.2.5 Alloying of Plutonium 341
7.2.3 Metallic Thorium Fuel 341
7.2.3.1 Extraction of Thorium and Fabrication 342
7.2.3.2 Crystal Structure and Physical Properties of Metallic Thorium 343
7.2.3.3 Mechanical Properties 343
7.2.3.4 Corrosion Properties of Thorium 344
7.2.3.5 Alloying of Thorium 345
7.2.3.6 Radiation Effects 346
7.2.3.7 Pros and Cons of Thorium-Based Fuel Cycles 346
7.3 Ceramic Fuels 347
7.3.1 Ceramic Uranium Fuels 347
7.3.1.1 Uranium Dioxide (Urania) 347
7.3.2 Uranium Carbide 352
7.3.3 Uranium Nitride 353